Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBunn, Corinne
dc.contributor.authorKulshrestha, Sujay
dc.contributor.authorBoyda, Jason
dc.contributor.authorBalasubramanian, Neelam
dc.contributor.authorBirch, Steven
dc.contributor.authorKarabayır, İbrahim
dc.contributor.authorAkbilgiç, Oğuz
dc.date.accessioned2021-12-12T17:03:34Z
dc.date.available2021-12-12T17:03:34Z
dc.date.issued2021
dc.identifier.issn0039-6060
dc.identifier.urihttps://doi.org/10.1016/j.surg.2020.07.045
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3701
dc.description.abstractBackground: We applied various machine learning algorithms to a large national dataset to model the risk of postoperative sepsis after appendectomy to evaluate utility of such methods and identify factors associated with postoperative sepsis in these patients. Methods: The National Surgery Quality Improvement Program database was used to identify patients undergoing appendectomy between 2005 and 2017. Logistic regression, support vector machines, random forest decision trees, and extreme gradient boosting machines were used to model the occurrence of postoperative sepsis. Results: In the study, 223,214 appendectomies were identified; 2,143 (0.96%) were indicated as having postoperative sepsis. Logistic regression (area under the curve 0.70; 95% confidence interval, 0.68-0.73), random forest decision trees (area under the curve 0.70; 95% confidence interval, 0.68-0.73), and extreme gradient boosting (area under the curve 0.70; 95% confidence interval, 0.68-0.73) afforded similar performance, while support vector machines (area under the curve 0.51; 95% confidence interval, 0.50-0.52) had worse performance. Variable importance analyses identified preoperative congestive heart failure, transfusion, and acute renal failure as predictors of postoperative sepsis. Conclusion: Machine learning methods can be used to predict the development of sepsis after appendectomy with moderate accuracy. Such predictive modeling has potential to ultimately allow for preoperative recognition of patients at risk for developing postoperative sepsis after appendectomy thus facilitating early intervention and reducing morbidity. (c) 2020 Elsevier Inc. All rights reserved.en_US
dc.description.sponsorshipNational Institute of Health T32 NIGMS [5T32GM008750-20]; National Institute of Health T32 NIAAA [5T32AA013527-17]en_US
dc.description.sponsorshipDr C. Bunn is supported by National Institute of Health T32 NIGMS 5T32GM008750-20. Dr S. Kulshrestha is supported by National Institute of Health T32 NIAAA 5T32AA013527-17.en_US
dc.language.isoengen_US
dc.publisherMosby-Elsevieren_US
dc.relation.ispartofSurgeryen_US
dc.identifier.doi10.1016/j.surg.2020.07.045
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject[No Keywords]en_US
dc.titleApplication of machine learning to the prediction of postoperative sepsis after appendectomyen_US
dc.typearticle
dc.authoridKarabayir, Ibrahim/0000-0002-7928-176X
dc.authoridKulshrestha, Sujay/0000-0002-2074-4010
dc.authoridakbilgic, oguz/0000-0003-0313-9254
dc.authoridBirch, Steven/0000-0001-8610-7690
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, Ekonometri Bölümü
dc.identifier.volume169en_US
dc.identifier.startpage671en_US
dc.identifier.issue3en_US
dc.identifier.endpage677en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57217287477
dc.authorscopusid57216852800
dc.authorscopusid57211262550
dc.authorscopusid57189363730
dc.authorscopusid57206543828
dc.authorscopusid56677890800
dc.authorscopusid36865330200
dc.identifier.wosWOS:000616586400031en_US
dc.identifier.scopus2-s2.0-85091249604en_US
dc.identifier.pmidPubMed: 32951903en_US
dc.authorwosidKarabayir, Ibrahim/AAC-3262-2019
dc.authorwosidakbilgic, oguz/F-9407-2013


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster