Electric and magnetic field effects on the binding energy of a hydrogenic impurity in quantum well wires with different shapes
Özet
In this work, we directly calculate the ground state energies for an electron in quantum well wires (QWWs) with different shapes in the presence of applied electric and magnetic fields using the finite difference method. Then, we study the ground state binding energy of a hydrogenic impurity with a variational approach. We obtain the binding energy for QWWs consisting of the combinations of square and parabolic well potential. Our results indicate that the impurity binding energy depends strongly on the structural confinement and also, on the applied electric and magnetic field. (c) 2008 Elsevier Ltd. All rights reserved.