Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCebeci, Bora
dc.contributor.authorAkan, Aydın
dc.contributor.authorSutcubasi, Bemis
dc.date.accessioned2021-12-12T17:01:39Z
dc.date.available2021-12-12T17:01:39Z
dc.date.issued2020
dc.identifier.isbn978-1-7281-7206-4
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3255
dc.description28th Signal Processing and Communications Applications Conference (SIU) -- OCT 05-07, 2020 -- ELECTR NETWORK -- Istanbul Medipol Univen_US
dc.description.abstractThis In this study, a system is proposed to predict mental workload for human-machine interface applications. EEG signals were recorded by performing 2-back test, consisting of conditioner and target stimulus, which is usually utilized to test working memory and decision-making processes. It is aimed here to find the features that will reveal the temporal and spatial relationships to be used in the estimation of slow responses from EEG signals. The Multivariate Empirical Mode Decomposition (MEMD) method, which stands out as a data-driven method in the analysis of non-stationary signals, was used for the analysis of EEG signals recorded from subjects. Positive and negative potentials with different latencies at the EEG stimulus period are averaged to select the most discriminative time segments. Supported Vector Machine (SVM) algorithm yields the highest prediction performance with selected features. In the evaluation where all participants average EEG data was used, the success was 64.5% (kappa = 0.29) and the classification success for a single randomly selected participant is obtained as 80% (kappa = 0.61).en_US
dc.language.isoturen_US
dc.publisherIeeeen_US
dc.relation.ispartof2020 28Th Signal Processing and Communications Applications Conference (Siu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmental workloaden_US
dc.subjectn-back testen_US
dc.subjectmultivariate empirical mode decompositionen_US
dc.subjecthuman machine interfaceen_US
dc.subjecthuman machine interactionen_US
dc.titleEEG Based Mental Workload Estimation Systemen_US
dc.typeproceedingsPaper
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid57221818281
dc.authorscopusid35617283100
dc.authorscopusid57202689821
dc.identifier.wosWOS:000653136100335en_US
dc.identifier.scopus2-s2.0-85100311460en_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster