Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDemir, Uğur
dc.contributor.authorKocaoğlu, Sıtkı
dc.contributor.authorAkdoğan, Erhan
dc.date.accessioned2021-12-12T17:01:22Z
dc.date.available2021-12-12T17:01:22Z
dc.date.issued2016
dc.identifier.issn0208-5216
dc.identifier.urihttps://doi.org/10.1016/j.bbe.2016.01.002
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3169
dc.description.abstractPhysiotherapy (physical therapy) is a form of therapy aimed at regaining patients their bodily limb motor functions. The use of what are called therapeutic exercise robots for such purposes is gradually increasing. Therapeutic exercise robots have been developed for lower and upper limbs. These robots lighten the workload of physiotherapists (PTs) by providing the movements on patients' relevant limbs. In order to get robots to perform the movements that the PT expects the patient to perform, it is required to determine the mechanical impedance parameters (inertia, stiffness and damping) due to the contact between the PT and patient's limb's, and to ensure that the robot moves according to these parameters. The aim of this study is to estimate these impedance parameters by using artificial neural networks (ANNs). Data from experiments on real subjects were used to train the network, and success was obtained using new data not presented to the network before. Subsequently, the previously acquired output was re-directed to the network with the purpose of developing a network, which can learn more accurately. Results have provided the designed ANN structure can generate necessary impedance parameter value to imitate PT motions. (C) 2016 Nalecz Institute of Biocybemetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier Sp. z o.o. All rights reserved.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [104M018]en_US
dc.description.sponsorshipThis work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Number 104M018.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofBiocybernetics and Biomedical Engineeringen_US
dc.identifier.doi10.1016/j.bbe.2016.01.002
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectImpedance parameter estimationen_US
dc.subjectRehabilitation roboticsen_US
dc.subjectArtificial neural networken_US
dc.titleHuman impedance parameter estimation using artificial neural network for modelling physiotherapist motionen_US
dc.typearticle
dc.authoridAkdogan, Erhan/0000-0003-1223-2725
dc.departmentMeslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Elektronik ve Otomasyon Bölümü
dc.identifier.volume36en_US
dc.identifier.startpage318en_US
dc.identifier.issue2en_US
dc.identifier.endpage326en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid56940408600
dc.authorscopusid57189026339
dc.authorscopusid6603476687
dc.identifier.wosWOS:000376817500002en_US
dc.identifier.scopus2-s2.0-84964756545en_US
dc.authorwosidAkdogan, Erhan/K-2017-2014
dc.authorwosidDemir, Ugur/ABA-9554-2020


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster