Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTak, Nihat
dc.date.accessioned2021-12-12T17:01:12Z
dc.date.available2021-12-12T17:01:12Z
dc.date.issued2020
dc.identifier.issn0377-0427
dc.identifier.issn1879-1778
dc.identifier.urihttps://doi.org/10.1016/j.cam.2019.112653
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3109
dc.description.abstractType-1 Fuzzy Functions (T1FFs) were developed by Turksen as an alternative fuzzy inference system (FIS) and have been commonly used in forecasting problems. The main advantages of T1FFs are that they are free of rules and easy to implement. Thus, they have recently been an attractive tool for researchers. T1FFs start with clustering the inputs using the fuzzy c-means (FCM) clustering algorithm. Later, the degrees of membership and its nonlinear transformations are included into the input matrix for each cluster. Thus, as many input matrices are obtained as the number of clusters. Finally, the outputs are combined using the degrees of membership of the new observations. Because gathering objects in the same cluster as homogeneously as possible is an important task for a clustering algorithm, the possibilistic FCM is adapted to T1FFs in order to overcome the FCM's limitations in the proposed method. We used 14 financial datasets and a beer consumption dataset to verify the forecasting performance of the proposed method. For example, the proposed method outperformed the other selected forecasting methods for the Taiwan Stock Exchange time-series datasets in terms of the mean of root mean square errors. (C) 2019 Elsevier B.V. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.identifier.doi10.1016/j.cam.2019.112653
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectPossibilistic fuzzy c-meansen_US
dc.subjectType-1 fuzzy functionsen_US
dc.subjectClusteringen_US
dc.subjectNon-linear forecastingen_US
dc.titleType-1 possibilistic fuzzy forecasting functionsen_US
dc.typearticle
dc.authoridTak, Nihat/0000-0001-8796-5101
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, Ekonometri Bölümü
dc.identifier.volume370en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57194529021
dc.identifier.wosWOS:000510957900008en_US
dc.identifier.scopus2-s2.0-85076456646en_US
dc.institutionauthorTak, Nihat
dc.authorwosidTak, Nihat/AAA-2035-2019


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster