Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTak, Nihat
dc.contributor.authorEgrioğlu, Erol
dc.contributor.authorBaş, Eren
dc.contributor.authorYolcu, Ufuk
dc.date.accessioned2021-12-12T17:01:12Z
dc.date.available2021-12-12T17:01:12Z
dc.date.issued2021
dc.identifier.issn1064-1246
dc.identifier.issn1875-8967
dc.identifier.urihttps://doi.org/10.3233/JIFS-202021
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3106
dc.description.abstractIntuitionistic meta fuzzy forecast combination functions are introduced in the paper. There are two challenges in the forecast combination literature, determining the optimum weights and the methods to combine. Although there are a few studies on determining the methods, there are numerous studies on determining the optimum weights of the forecasting methods. In this sense, the questions like What methods should we choose in the combination? and What combination function or the weights should we choose for the methods are handled in the proposed method. Thus, the first two contributions that the paper aims to propose are to obtain the optimum weights and the proper forecasting methods in combination functions by employing meta fuzzy functions (MFFs). MFFs are recently introduced for aggregating different methods on a specific topic. Although meta-analysis aims to combine the findings of different primary studies, MFFs aim to aggregate different methods based on their performances on a specific topic. Thus, forecasting is selected as the specific topic to propose a novel forecast combination approach inspired by MFFs in this study. Another contribution of the paper is to improve the performance of MFFs by employing intuitionistic fuzzy c-means. 14 meteorological datasets are used to evaluate the performance of the proposed method. Results showed that the proposed method can be a handy tool for dealing with forecasting problems. The outstanding performance of the proposed method is verified in terms of RMSE and MAPE.en_US
dc.language.isoengen_US
dc.publisherIos Pressen_US
dc.relation.ispartofJournal of Intelligent & Fuzzy Systemsen_US
dc.identifier.doi10.3233/JIFS-202021
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecast combinationen_US
dc.subjectmeta-analysisen_US
dc.subjectintuitionistic fuzzy c-meansen_US
dc.subjectmeta fuzzy functionsen_US
dc.subjectmeteorologyen_US
dc.titleAn adaptive forecast combination approach based on meta intuitionistic fuzzy functionsen_US
dc.typearticle
dc.authoridTak, Nihat/0000-0001-8796-5101
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, Ekonometri Bölümü
dc.identifier.volume40en_US
dc.identifier.startpage9567en_US
dc.identifier.issue5en_US
dc.identifier.endpage9581en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57194529021
dc.authorscopusid23093703600
dc.authorscopusid55927757900
dc.authorscopusid24282075600
dc.identifier.wosWOS:000644456300061en_US
dc.identifier.scopus2-s2.0-85104945195en_US
dc.authorwosidTak, Nihat/AAA-2035-2019


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster