Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkbilgiç, Oğuz
dc.contributor.authorObi, Yoshitsugu
dc.contributor.authorPotukuchi, Praveen K.
dc.contributor.authorKarabayır, İbrahim
dc.contributor.authorNguyen, Danh, V
dc.contributor.authorSoohoo, Melissa
dc.contributor.authorKovesdy, Csaba P.
dc.date.accessioned2021-12-12T17:00:48Z
dc.date.available2021-12-12T17:00:48Z
dc.date.issued2019
dc.identifier.issn2468-0249
dc.identifier.urihttps://doi.org/10.1016/j.ekir.2019.06.009
dc.identifier.urihttps://hdl.handle.net/20.500.11857/2920
dc.description.abstractIntroduction: Given the high mortality rate within the first year of dialysis initiation, an accurate estimation of postdialysis mortality could help patients and clinicians in decision making about initiation of dialysis. We aimed to use machine learning (ML) by incorporating complex information from electronic health records to predict patients at risk for postdialysis short-term mortality. Methods: This study was carried out on a contemporary cohort of 27,615 US veterans with incident end-stage renal disease (ESRD). We implemented a random forest method on 49 variables obtained before dialysis transition to predict outcomes of 30-, 90-, 180-, and 365-day all-cause mortality after dialysis initiation. Results: The mean (+/- SD) age of our cohort was 68.7 +/- 11.2 years, 98.1% of patients were men, 29.4% were African American, and 71.4% were diabetic. The final random forest model provided C-statistics (95% confidence intervals) of 0.7185 (0.6994-0.7377), 0.7446 (0.7346-0.7546), 0.7504 (0.7425-0.7583), and 0.7488 (0.7421-0.7554) for predicting risk of death within the 4 different time windows. The models showed good internal validity and replicated well in patients with various demographic and clinical characteristics and provided similar or better performance compared with other ML algorithms. Results may not be generalizable to non-veterans. Use of predictors available in electronic medical records has limited the assessment of number of predictors. Conclusion: We implemented and ML-based method to accurately predict short-term postdialysis mortality in patients with incident ESRD. Our models could aid patients and clinicians in better decision making about the best course of action in patients approaching ESRD.en_US
dc.description.sponsorshipNational Institutes of HealthUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [U01-DK102163]; VA Information Resource Center [SDR 02-237, SDR 98-004]; NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASESUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK) [U01DK102163] Funding Source: NIH RePORTERen_US
dc.description.sponsorshipThis study is supported by grant U01-DK102163 from the National Institutes of Health to KKZ and CK and by resources from the US Department of Veterans Affairs (VA). The data reported here have been supplied in part by the US Renal Data System (USRDS). Support for VA/Centers for Medicare and Medicaid Services (CMS) data is provided by the Veterans Health Administration, Office of Research and Development, Health Services Research and Development, and VA Information Resource Center (project numbers SDR 02-237 and 98-004).en_US
dc.language.isoengen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofKidney International Reportsen_US
dc.identifier.doi10.1016/j.ekir.2019.06.009
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectchronic kidney diseaseen_US
dc.subjectdialysisen_US
dc.subjectend-stage renal diseaseen_US
dc.subjectmortalityen_US
dc.subjectrandom foresten_US
dc.titleMachine Learning to Identify Dialysis Patients at High Death Risken_US
dc.typearticle
dc.authoridakbilgic, oguz/0000-0003-0313-9254
dc.authoridObi, Yoshitsugu/0000-0001-7032-4383
dc.authoridKalantar-Zadeh, Kamyar/0000-0002-8666-0725
dc.authoridKarabayir, Ibrahim/0000-0002-7928-176X
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, Ekonometri Bölümü
dc.identifier.volume4en_US
dc.identifier.startpage1219en_US
dc.identifier.issue9en_US
dc.identifier.endpage1229en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid28567583700
dc.authorscopusid23989021400
dc.authorscopusid57144489700
dc.authorscopusid56677890800
dc.authorscopusid7402147259
dc.authorscopusid56083494400
dc.authorscopusid6507712607
dc.identifier.wosWOS:000484384000004en_US
dc.identifier.scopus2-s2.0-85070215161en_US
dc.identifier.pmidPubMed: 31517141en_US
dc.authorwosidakbilgic, oguz/F-9407-2013
dc.authorwosidObi, Yoshitsugu/G-5764-2017
dc.authorwosidKalantar-Zadeh, Kamyar/Q-4734-2018
dc.authorwosidKarabayir, Ibrahim/AAC-3262-2019


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster