dc.contributor.author | Coşgun, Ercan | |
dc.contributor.author | Çelebi, A. | |
dc.contributor.author | Güllü, M. K. | |
dc.date.accessioned | 2021-12-12T16:56:37Z | |
dc.date.available | 2021-12-12T16:56:37Z | |
dc.date.issued | 2019 | |
dc.identifier.isbn | 9781728124209 | |
dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO.2019.8895137 | |
dc.identifier.uri | https://hdl.handle.net/20.500.11857/2567 | |
dc.description | 2019 Medical Technologies Congress, TIPTEKNO 2019 -- 3 October 2019 through 5 October 2019 -- 154293 | en_US |
dc.description.abstract | In this study, the methods used in the classification of imbalanced data sets were applied to EEG signals obtained from epilepsy patients and epileptic seizures were estimated. Firstly, the data set was balanced by using under-sampling, oversampling, and synthetic minority over-sampling technique and classified with Support Vector Machines. Then, the data set was classified using the Rusboost classifier without balancing. Classification results were compared with different criteria and the advantages and disadvantage of the methods were evaluated. © 2019 IEEE. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | TIPTEKNO 2019 - Tip Teknolojileri Kongresi | en_US |
dc.identifier.doi | 10.1109/TIPTEKNO.2019.8895137 | |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Epileptic seizure prediction | en_US |
dc.subject | Imbalanced dataset | en_US |
dc.subject | Rusboost Classifier | en_US |
dc.title | Epileptic seizure prediction for imbalanced datasets | en_US |
dc.title.alternative | Dengesiz veri kümeleri için epileptik nöbet tahmini | en_US |
dc.type | conferenceObject | |
dc.department | Meslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Elektronik ve Otomasyon Bölümü | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 56236872500 | |
dc.authorscopusid | 36793379200 | |
dc.authorscopusid | 55666247200 | |
dc.identifier.scopus | 2-s2.0-85075607017 | en_US |