Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkgenç, Berna
dc.date.accessioned2021-12-12T17:02:54Z
dc.date.available2021-12-12T17:02:54Z
dc.date.issued2019
dc.identifier.issn0022-2461
dc.identifier.issn1573-4803
dc.identifier.urihttps://doi.org/10.1007/s10853-019-03597-3
dc.identifier.urihttps://hdl.handle.net/20.500.11857/3562
dc.description.abstractTwo-dimensional materials have the greatest surface to volume ratio and are sought for a number of applications including electrodes in electrochemical storage. Understanding the mobility and chemical exchange characteristics of such layers with ionic charge carriers is vital for electrochemical functionality. Li-decorated b-As has been proposed as a promising material due to fast and directional nature of Li-ion diffusion, making it suitable for use as anode material in Li-ion batteries. Pathways of Li-ion diffusion on such structures is still under debate, and for this purpose, we investigated Li-decorated monolayer and bilayer b-As to shed light on Li mobility, along the armchair and zigzag direction in particular, and estimate the relevant diffusion barriers using DFT. The calculations reveal that (1) functionalization of the surface by Li atoms is energetically favorable, (2) binding of each single Li atom occurs via 2eV and (3) H site is found the most stable site for adsorption energy of Li-ions. The diffusion barrier of Li-ion on b-As was found to be strongly dependent on anisotropy as the energy barrier along the zigzag direction (0.2eV) is almost four times lower than the armchair direction (0.8eV). Moreover, the open-circuit voltage across such a layer decreases with the increase in concentration of Li-ion doping of b-As. OCV is calculated as 4V for a Li concentration of 20% which is suitable for anode materials. We also discuss some peculiar features of the electronic structure of b-As with Li decoration.en_US
dc.description.sponsorshipKLU-BAP [174]en_US
dc.description.sponsorshipComputational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). The author acknowledges financial support the KLU-BAP under the Project Number 174.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Materials Scienceen_US
dc.identifier.doi10.1007/s10853-019-03597-3
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAb-Initioen_US
dc.subjectLithiumen_US
dc.subjectPhosphoreneen_US
dc.subjectIntercalationen_US
dc.subjectAdsorptionen_US
dc.subjectUltrafasten_US
dc.subjectDiffusionen_US
dc.subjectTransporten_US
dc.subjectGrapheneen_US
dc.subjectCarbonen_US
dc.titleTwo-dimensional black arsenic for Li-ion battery applications: a DFT studyen_US
dc.typearticle
dc.authorid, Berna/0000-0002-8998-0257
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Fizik Bölümü
dc.identifier.volume54en_US
dc.identifier.startpage9543en_US
dc.identifier.issue13en_US
dc.identifier.endpage9552en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid55850750600
dc.identifier.wosWOS:000464908700020en_US
dc.identifier.scopus2-s2.0-85064443606en_US
dc.institutionauthorAkgenç, Berna
dc.authorwosidAKGENC, BERNA/V-2486-2019


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster