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Abstract 

 
This present research uses artifical neural networks (ANNs) to determine Nusselt numbers and 
friction factors for nine different baffle plate inserted tubes. MATLAB toolbox was used to 
search better network configuration prediction by using commonly used multilayer feed-
forward neural networks (MLFNN) with back propagation (BP) learning algorithm with five 
different training functions with adaptation learning function of mean square error and 
TANSIG transfer function. In this research, eighteen data samples were used in a series of runs 
for each nine samples of baffle-inserted tube. Up to 70% of the whole experimental data was 
used to train the models, 15 % was used to test the outputs and the remaining data points 
which were not used for training were used to evaluate the validity of the ANNs. The results 
show that the TRAINBR training function was the best model for predicting the target 
experimental outputs.  
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Introduction 
 

Artifical Neural Networks (ANNs) have been widely used for thermal analysis of heat 
exchangers during the last two decades. The applications of ANN for thermal analysis of heat 
exchangers are reviewed in detail (Mohanraj, Jayaraj and Muraleedharan, 2015). The various 
network architectures tested in (Zdaniuk, Chamra and Keith Walters, 2007) suggesting feed-
forward network with log-sigmoid node functions in the first layer and a linear node function 
in the output layer to be the most advantageous architecture to use for prediction of helically-
finned tube performance.  

 
A feed forward ANN approach trained by Levenberg–Marquardt algorithm was 

developed to predict friction factor in the serpentine microchannels with rectangular cross 
section has been investigated experimentally (Rahimi, Hajialyani, Beigzadeh and Alsairafi, 
2015) hybrid high order neural network and a feed forward neural network are developed and 
applied to find an optimized empirical correlation for prediction of dryout heat transfer. The 
values predicted by the models are compared with each other and also with the previous 
values of empirical correlation (Rostamifard, Fallahnezhad, Zaferanlouei, Setayeshi and 
Moradi, 2011).  

 
 
ANN is applied for heat transfer analysis of shell-and-tube heat exchangers with 

segmental baffles or continuous helical baffles. Three heat exchangers were experimentally 
investigated. Limited experimental data was obtained for training and testing neural network 
configurations. The commonly used back propagation algorithm was used to train and test 
networks. Prediction of the outlet temperature differences in each side and overall heat 
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transfer rates were performed. Different network configurations were also studied by the aid 
of searching a relatively better network for prediction (Xie, Wang, Zeng, and Luo, 2007). ANN 
is used for heat transfer analysis in corrugated channels. A data set evaluated experimentally 
is prepared for processing with the use of neural networks. Back propagation algorithm, the 
most common learning method for ANNs, was used in training and testing the network 
(Islamoglu and Kurt, 2004). The capabilities of an ANN approach for predicting the 
performance of a liquid desiccant dehumidifier in terms of the water condensation rate and 
dehumidifier effectiveness is proposed (Mohammad, Bin Mat, Sulaiman, Sopian, and Al-abidi, 
2013).  An application of ANNs to characterize thermo-hydraulic behavior of helical wire coil 
inserts inside tube. An experimental study was carried out to investigate the effects of four 
types of wire coil inserts on heat transfer enhancement and pressure drop. The performance 
of the ANN was found to be superior in comparison with corresponding power-law regressions 
(Jafari Nasr, Habibi Khalaj, and Mozaffari, 2010). This paper describes the selection of training 
function of an ANN for modeling the heat transfer prediction of horizontal tube immersed in 
gas–solid fluidized bed of large particles. The ANN modeling was developed to study the effect 
of fluidizing gas velocity on the average heat transfer coefficient between fluidizing bed and 
horizontal tube surface. The feed-forward network with back propagation structure 
implemented using Levenberg–Marquardt’s learning rule in the neural network approach. 
Performances of five training functions implemented in training neural network for predicting 
the heat transfer coefficient (Kamble, Pangavhane, and Singh, 2015). Despite the fact that 
comprehensive studies were conducted on heat transfer applications in the literature, lack of 
sufficient research studies concerning the effectiveness and comparision of different ANN 
models considering transfer functions and training algorithms in the broader sense based on 
mean relative error (MRE) and correlation coefficient (R) for all data sets. 

 
Experimental procedure and data collection 

 
   Experimental setup  

 
A schematic diagram of experimental setup used for the heat transfer analysis in this 

study for data gathering is presented in (Figure 1).  
 
 

 
 

 
 

Figure 1: Schematic diagram of experimental setup 
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It consists of three parts flow entrance section; flow development section, test section 

and flow exit section. A detailed presentation of the experimental setup design, fabrication of 
experimental apparatus and data reduction are available in some of author’s previous 
researche in detail (Tandiroglu, 2006). A total of nine samples of baffle inserted tubes having 
half circle geometry were investigated and the effect of thermal radiation for internal flow is 
ignored during the experiments due to low temperature difference between wall and baffle. 
Half circle baffles made of type AISI 304 L were set in tube which has an inner diameter of   31 
mm and the thickness of 2 mm. In the experiments, at a specific air temperature, the air flow 
rate was fixed, then constant heat flux was induced to test section directly by means of PLC 
integrated DC power supply which could be regulated in the ranges of 0-60 V and            0-660 
A. Data for all the measuring points were recorded and finally averaged over the elapsed time 
simultaneously by means of data online acqusition system till the system was allowed to 
approach the steady state. All these measurements along with the test runs were collected 
and displayed by a PC through the data acquisition system.  The flow geometries and 
parameters investigated in this study were illustrated as follows and are shown in (Figure 2).   
 

 
 
Figure 2: Schematics of half circle baffled tubes 
 

 
The heat loss calibration tests were performed before taking measurements on the 

system for each type of baffle inserted tubes in the following manner. The time averaged wall 
temperature variations by time were recorded using data online acquisition system. When the 
steady state condition is established to insure that external thermal equilibrium can be 
achieved, heat loss calibration tests for different values of power supply are reported for a 
steady state case. It was found that the heat loss is directly proportional to the difference 
between the wall and ambient temperatures. The required constant of proportionality was 
taken from the previously determined heat loss calibrations. It was observed that the 
maximum heat loss did not exceed to %5 all through the test runs. More detailed explanation 
of the heat loss calibration technique was given by (Tandiroglu, 2006). 

 
     Data reduction 
 

The goal of this study is to determine Nusselt numbers, friction factor, entropy 
generation numbers and irreversibility distribution ratios of the baffle inserted tubes for fully 
developed turbulent flow by using ANNs. The independent parameters are Reynolds number 
and tube diameter. The Reynolds numbers based on the tube hydraulic diameter are given by, 

 
Re = uD

v
                                                                                                          (1) 
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The average fully developed heat transfer coefficients are evaluated from the measured 
temperatures and heat inputs. 
  
h = Q

(Tw−Tb)A
                                                                           (2) 

 
where A is convective heat transfer area. Then full developed Nusselt numbers are evaluated 
by using, 
 
Nu = hD

k
                                                                                                                                        (3) 

 
It may be noted that for periodically fully developed flow, the pressure exibits periodicity 

character similar to those already ascribed to the temperature. The pressure at successive 
points lies on straight line as well as temperatures of the same set of points. With this, the 
friction factor is evaluated using Eq. (4). 

 

f =
−dPdX
1
2ρu

2                                                                                                                                      (4) 

 
where dP

dX
 is pressure gradient. 

  
     Experimental uncertainity analysis 
 

The uncertainties of experimental quantities were computed by using the method 
presented (Kline and McClintock, 1953). The uncertainty calculation method used involves 
calculating derivatives of the desired variable with respect to individual experimental 
quantities and applying known uncertainties. The general equation presented by (Kline and 
McClintock, 1953). Showing the magnitude of the uncertainty in R(uR) is 

 

uR = ± �� ∂R
∂x1

ux1�
2

+ � ∂R
∂x2

ux2�
2

+ ⋯� ∂R
∂xn

uxn�
2
�
1
2
                                                         (5) 

 
where R = R(x1, x2, … . . xn) and xn is the variable that affects the results of R. 
  

The experimental results up to a Reynolds number of 20.000 were correlated with a 
standard deviation of 5% at most. Experimental uncertainties in the Reynolds number, friction 
factor, and Nusselt number were estimated by the above procedure described (Kline and 
McClintock, 1953). The mean uncertainties are ±2.5% in the Reynolds number, ±4% in the 
friction number. The highest uncertainties are ±9% in the Nusselt number for the type 9031. 
Uncertainties in the Nusselt number range between ±5% and 8% for 3.000 ≤ Re ≤ 20.000 at 
the type 18.093 and ±8% and 10% 3.000 ≤ Re ≤ 20.000 at the type 9031, highest uncertainties 
being at the lowest Reynolds number (Tandiroglu, 2006). 
 

     Development of artificial neural network  
 

ANN is a numerical model that simulates the human brain’s biological neural network 
ability to learn and recognize complicated nonlinear functions. This learning ability makes the 
ANN more powerful than the parametric approaches. ANN usage in heat transfer applications 
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is popular because of its functional approximation between the inputs and desired outputs. In 
this present study a MLFNN with BP learning algorithm (Tan, Ward, Wilcox and Payne, 2009) 
has been used. It is simple and high learning rates; therefore it is widely used to train the 
networks. 

 
The ANN model was developed for the system with four independent parameters in the 

input layer (Reynold number, tube lenght to baffle spacing ratio, baffle orientation angles and 
pitch to diameter ratio),  four parameters (time averaged values of Nusselt number and 
friction factor) and five neurons in hidden layer.  

 
Neural network tool in the MATLAB R2011b version is used for ANN modelling of the 

system. In this study, multilayer feed-forward neural networks (MLFNN) with back 
propagation (BP) training and validation algorithms were applied for each of five different 
training functions given (Table 1).  
 
Table 1: ANN training function descriptions used in for the study 
 
Training 
function 

Description 

TRAINLM Levenberg-Marquardt algorithm. Fastest training algorithm for networks of 
moderate size. Has memory reduction feature for use when the training set 
is large (Foresee and Hagan, 1997), (Hagan, and Menhaj, 1994).  

TRAINRP Resilient backpropagation. Simple batch mode training algorithm with fast 
convergence and minimal storage requirements (Riedmiller and Braun, 
1993).  

TRAINR Random order incremental training w/learning functions. TRAINR trains a 
network with weight and bias learning rules with incremental updates after 
each presentation of an input. Inputs are presented in random order. 

TRAINGD Basic gradient descent. Slow response, can be used in incremental mode 
training. 

TRAINGDM Gradient descent with momentum. Generally faster than traingd. Can be 
used in incremental mode training. 

TRAINGDA Gradient descent with adaptive lr backpropagation. TRAINGDA is a network 
training function that updates weight and bias values according to gradient 
descent with adaptive learning rate. 

  
 
 

     Normalization of experimental data 
 

It is desirable to normalize all the input and output data with the largest and smallest 
values of each of the data sets, since the variables of input and output data have different 
physical units and ranges. So, all of the input and output data were normalized between 0,1 
and 0,9 due to restriction of sigmoid function (Nasr, Badrand Joun, 2003), (Sanjay, Jyothi and 
Chin, 2006), (Nasr, Badr, and Joun, 2003) using the below rearranged formula as follows: 

 
 

Normalized value = 0,8 ∗ � X−Xmin
Xmax−Xmin

�+ 0.1                        (6) 
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where the X is the measured value, while Xmin and Xmax values are the minimum and 
maximum values of found in the train set and also employed data for normalization are given 
shown  (Table 2). TANSIG transfer function gives better results than logarithmic sigmoid 
function (LOGSIG) according to present investigation as mentioned 
(Dariush,  Mehdi, Salman,  Saeed,  and Hassan, 2011). 
 
 
Table 2: The range of employed data in the modelling 
 
Variable Range 

Minimum Maximum 
f 0,01517 0,1835 
Nu 52,87346 2712,383 
   

 
TANSIG transfer function is being used as an activation function in the hidden layer of 

ANN (Vogl, Mangis, Rigler, Zink and Alkon, 1988) is given as 
 

f(x) = 2
1+e−2x

− 1                                 (7) 
 

Results and discussion 
 

MATLAB toolbox was used to search better network configuration prediction by using 
commonly used feed forward back propagation algorithm with five different training functions 
with adaptation learning function of MSE and TANSIG transfer function.  

 
In this research, eighteen data samples were used in a series of runs for each nine 

samples of baffle-inserted tube. Reynold number, tube lenght to baffle spacing ratio, baffle 
orientation angle and pitch to diameter ratio were considered as input variables of ANNs and 
the time averaged values of Nusselt number and friction factor determined as the target data. 
Up to 70% of the whole experimental data was used to train the models, 15% was used to test 
the outputs and the remaining data points which were not used for training were used to 
evaluate the validity of the ANNs.  

 
As mentioned above the ANN was trained using all possible five different training 

functions avaliable in MATLAB toolbox. TRAINLM training function has shown better 
performance as compared to other four training functions under the constant network 
parameters. The absolute fraction of variance values (R2) and optimal number of hidden 
neurons for each training function were determined and tabulated in (Table 3).  
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Table 3: Absolute fraction of variance (R2 ) values for different training algorithms 
  
Training 
algorithm   

Number of optimal 
hidden neurons 

R2 
Training 

TRAINLM 10 0,99889 
TRAINRP 6 0,99877 
TRAINR 5 0,99823 
TRAINGD 8 0,99792 
TRAINGDM 7 0,99715 
   

 
Five different ANN training models have been compared by mean square error (MSE), 

mean relative error (MRE) and absolute fraction of variance (R2) mathematically expressed as 
following equations: 

 
MRE = 1

n
∑ 100∗|ai−ti|

|ti|
n
i=1                       (8) 

MSE = 1
n

(ai − ti)2           (9) 
 

R2 = 1 − �∑ (ai−ti)2n
i=1
∑ (ti)2n
i=1

�          (10) 

 
where ai is the actual (experimental) value, ti is the predicted (output) value and n is the 
number of the data. The networks were trained for all five different training functions under 
same network parameters. The training was continued till the least value of MSE at a definite 
value of epochs attained for all five different training functions seperately. The use of the MSE 
is an excellent numerical criterion for evaluating the performance of a prediction tool. Table 
4 shows the results for the MRE, MSE and R2 values for different training algorithms. After 
analysing all the results, TRAINLM training function has shown best performance as compared 
to other four training functions for predicting the target experimental outputs which has the 
least MSE value. 
 
Table 4: MRE, MSE and R2 values for different training algorithms 
 
Training 
algorithm   

MRE  MSE R2 

TRAINLM 0,996613818 0,88701807 0,997701323 
TRAINRP 0,996825454 0,887394837 0,996842496 
TRAINR 0,997248727 0,88814861 0,996243534 
TRAINGD 0,998306910 0,890034442 0,995245664 
TRAINGDM 0,998306910 0,890034442 0,994048880 
    
    

All of the evaluations clearly show that; the coefficient of determination values R2 for 
best training function TRAINLM has achieved unity for all outputs. The results show that the 
optimal neural network configuration TRAINLM training function is successful in predicting the 
solution of transient forced convective heat transfer problems to determine friction factor, 
Nusselt number and entropy generation number.  
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Conclusions 
 

In the present study, artifical neural network methodology has been successfully applied 
on transient forced convective heat transfer to determine the time averaged values of Nusselt 
number, friction factor, entropy generation number and irreversibility distribution ratio. 
Alternative five configurations of feed forward back propogation to determine optimal 
training function by using commonly used MLFNN with BP learning function with five different 
training functions with adaptation learning function of mean square error and TANSIG transfer 
function. The highlights of the work are the use of an actual experimental data set to develop 
an optimal ANN configuration between five different ANN configurations. It is obvious that all 
of the the training functions are in good agreement with the experimental data set but 
TRAINLM training function is the best training function for prediction of output layer 
parameters.  

 
Almost perfect accuracy between the TRAINLM neural network training function 

predictions and experimental data was achieved with mean relative error (MRE) of 
0,996613818 % for data sets, which suggests the reliability of the ANNs as a strong tool for 
predicting the performance of transient forced convective heat transfer applications. 

 
Nomenclature 
A crossectional area (m2) R coefficient of correlation 
dP
dX

    pressure gradient, � N
m3� R2 coefficient of determination 

D         tube inlet diameter, (m) Re       Reynolds number 
h heat transfer coefficient, ( W

m2K
) u  velocity, (𝑚𝑚

𝑠𝑠
) 

H         baffle spacing or pitch, (m)  
H/D ratio of pitch to tube inlet diameter  Greek symbols 
𝑓𝑓         dimensionless pressure drop  ρ  density, (kg

m3) 
k    thermal conductivity, ( W

mK
) 𝜌𝜌 kinematic viscosity, (m

2

s
) 

L         tube length, (m)  
Nu Nusselt number Subscripts 
Q heat transferred to fluid,  (J) b bulk  
S cross sectional area, (m2) m mean 
T      temperature, (K) 𝑜𝑜 smooth pipe 
X measured value 𝑤𝑤 wall 

 
 
Abbreviations 
 

 

ANN artifical neural network 
BP 
DC 
LOGSIG 

back propagation 
direct current 
logarithmic sigmoid  

MLFNN multilayer feed-forward neural network 
SE 
MRE 

mean square error 
mean relative error 

PLC programmable logic controller 
TANSIG tangent sigmoid  
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