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ABSTRACT

MaximumDistance Separable (MDS) andMaximumDistance Binary Linear (MDBL) codes are used as diffusion layers in the
design of the well-known block ciphers like the Advanced Encryption Standard, Khazad, Camellia, and ARIA. The reason for
the use of these codes in the design of block ciphers is that they provide optimal diffusion effect to meet security of a round
function of a block cipher. On the other hand, the constructions of these diffusion layers are various. For example, whereas
the Advanced Encryption Standard uses a 4� 4 MDS matrix over GF(28), ARIA uses a 16� 16 involutory binary matrix over
GF(28). The most important cryptographic property of a diffusion layer is the branch number of that diffusion layer, which
represents the diffusion rate and measures security against linear and differential cryptanalysis. Therefore, MDS andMaximum
Distance Binary Linear codes, which providemaximum branch number for a diffusion layer, are preferred in the design of block
ciphers as diffusion layers. In this paper, we present a new algebraic construction method based on MDS codes for 8� 8 and
16� 16 involutory and non-involutory binary matrices of branch numbers 5 and 8, respectively. By using this construction
method, we also show some examples of these diffusion layers. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most block ciphers are constructed by repeatedly applying a
simple function. This approach is known as iterated block
cipher. Each iteration is called a round and the repeated
function is termed the round function [1]. Also, many block
ciphers are designed by using two structures: Feistel net-
works and substitution permutation networks (SPNs). Two
important block cipher examples designed by Feistel net-
works and SPNs can be given as Data Encryption Standard
[2] and Advanced Encryption Standard (AES) [3], respec-
tively. An SPN structure consists of a substitution layer
followed by a linear transformation, also called diffusion
layer. The linear diffusion layer ensures that after a few
rounds, all the output bits depend on all the input bits. The
substitution layer or nonlinear layer ensures that this depen-
dency is of a complex and nonlinear nature [4], [5]. Popular
choices of substitution layers or S-boxes providing good
cryptographic properties are based on inversion mapping
over GF(28) [6], [7], [8], [9]. Such S-boxes are widely used
in block ciphers like the AES, Camellia [10], and ARIA [11].

A linear transformation provides diffusion [12] by
mixing bits of the fixed size input block to produce the
Copyright © 2012 John Wiley & Sons, Ltd.
corresponding output block of the same size [13]. Existing
techniques of measuring diffusion are as follows:

(1) the avalanche effect [14],
(2) the strict avalanche effect [15],
(3) the completeness property [16],
(4) the branch number [17],
(5) the number of fixed points [13].

Whereas the first two criteria quantify the effects of
one-bit change to changes in the output bits, completeness
property deals with the dependency of the output bits on
the input bits. On the other hand, the branch number,
which represents diffusion rate and measures security
against linear [18] and differential cryptanalysis [19],
denotes the minimum number of active S-boxes for any
two consecutive rounds. The last technique to measure
diffusion proposed in [13] is the number of fixed points.
This measure provides an indication of how well the linear
transformation effectively changes the value of the input
block when producing the output block. The basis of the
idea is that there is no diffusion at fixed points because
the input blocks are left unchanged by the linear
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transformation [13]. On the other hand, another required
property of a diffusion layer affecting its choice is the
efficiency in hardware and software implementations.

Many block ciphers use Maximum Distance Separable
(MDS) and Maximum Distance Binary Linear codes as
diffusion layers. From the well-known ciphers, whereas the
AES and Khazad [20] use MDS codes, the Camellia and
ARIA use Maximum Distance Binary Linear codes as
diffusion layers in their design. These diffusion layers are
shown in Table I.

As shown in Table I, Khazad and ARIA use involu-
tional diffusion layers, which transform a 64-bit input to
a 64-bit output and a 128-bit input to a 128-bit output,
respectively. The reason for using involutional diffusion
layers in the design of these block ciphers is that involu-
tional mappings reduce the implementation cost of both
encryption and decryption operations, and imply that both
transformations have the same cryptographic strength [21].
The Camellia cipher designed by using Feistel structure
modifies half of the current 128-bit block and transforms
a 64-bit input to a 64-bit output in one round encryption
stage. Also, it uses an 8� 8 non-involutory binary matrix
over GF(28) as a diffusion layer. On the other hand, the
AES uses a 4� 4 non-involutory MDS matrix over GF
(28), which transforms a 32-bit input to a 32-bit output.

This paper proposes a new algebraic construction
method for obtaining cryptographically good binary linear
transformations. When constructing binary linear transfor-
mations, we concentrate on the two cryptographic proper-
ties, which are respectively the branch number and the
number of fixed points. Our construction method is based
on 2� 2 and 4� 4 involutory and non-involutory MDS
matrices with the elements in GF(24). After giving mathe-
matical preliminaries, this construction method is given to
determine 8� 8 and 16� 16 involutory and non-involutory
binary matrices over GF(28) with branch numbers 5 and 8,
respectively, because it is stated in [5] that the maximum
branch number of 8� 8 and 16� 16 binary matrices is re-
spectively upper bounded by 5 and 8. On the other hand,
an advantage of using such binary matrices in the design
of block ciphers compared with MDS codes is the imple-
mentation phase where only XOR operations are needed
whereas MDS matrices may need XOR operations, table
look-ups, and xtime calls [21].
2. FINITE FIELDS

A finite field is commutative ring (with unity) in which all
nonzero elements have a multiplicative inverse [21]. The
Table I. Diffusion layers of AES, Khazad, Camellia, and ARIA.

Block cipher Diffusion layer

AES 4� 4 MDS matrix over GF(28)
Khazad 8� 8 involutory MDS matrix over GF(28)
Camellia 8� 8 binary matrix over GF(28)
ARIA 16� 16 involutory binary matrix over GF(28)
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finite field GF(2m) has 2m elements, where m is a nonzero
positive integer. Each of the 2m elements of GF(2m) can be
uniquely represented with a polynomial degree up to m-1
with coefficients in GF(2). For example, if x is an element
in GF(2m), then one can have polynomial or standard basis
representation of x as

xm�1am�1 þ xm�2am�2 þ . . .þ x1aþ x0 (1)

where a denotes the primitive element used to construct the
finite field GF(2m). The addition of two field elements of
GF(2m) is simply bitwise XOR operation of the coefficients
of the equal powers of a. On the other hand, multiplication
in a finite field GF(2m) is related with multiplying the two
polynomials and reducing the product polynomial modulo
p(x), which is an irreducible polynomial of degreem. In this
paper, we are concerned with the finite field GF(24), where
the irreducible polynomial over GF(2) is x4 + x+ 1. A com-
pact representation of an element x2GF(24) uses hexadec-
imal digits (denoted with subscript h), expressing the
coefficients of the polynomial representation. For example,
a3 + a=Ah in the finite field GF(24). For more information
on finite fields, the reader is referred to [22], [23].

Example 1. Let GF(24) be defined by the primitive polyno-
mial p(x) = x4 + x+ 1. Let a be a root of p(x). Then, for
any x2GF(24), we can write x= x3a

3 + x2a
2 + x1a+ x0,

where (x3, . . ., x0)2GF(2) and {a3,a2,a1,a0}={a
3,a2,a1, 1}

is a polynomial basis of GF(24) over GF(2). A finite
field multiplication of 2h or a by any x2GF(24) can be
given as

2h�xð Þmodp xð Þ ¼ a�x
¼ x3a4 þ x2a3 þ x1a2 þ x0a
¼ x2a3 þ x1a2 þ x3 þ x0ð Þaþ x3;

where � operation denotes finite field multiplication. By
using the idea given in Example 1, where the result of
finite field multiplication is given in bits, a table may be
constructed for finite field multiplication of all 16 possible
values by input x representing 4-bit values. In Table II,
the finite field multiplication results obtained by using the
same primitive polynomial are given because the results
in this table will be used when constructing binary linear
transformations.

3. MATHEMATICAL PRELIMINARIES

In this section, we present the needed mathematical back-
ground for the algebraic construction of cryptographically
good binary linear transformations. Because we use
MDS matrices in the construction, we also present some
important properties of MDS codes.

Most of the diffusion layers are linear transformations
and represented as matrices and therefore we can define a
diffusion layer as A : ({0, 1}m)n! ({0, 1}m)n, which is a
linear transformation as follows:
ecurity Comm. Networks 2014; 7:53–63 © 2012 John Wiley & Sons, Ltd.
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Table II. Finite field multiplication results of all 16 possible values by input x= (x3, x2, x1, x0).

Hexadecimal Values Polynomial basis

a3 a2 a 1
1 x3 x2 x1 x0
2 x2 x1 x3+ x0 x3
3 x3 + x2 x2 + x1 x3+ x1 + x0 x3+ x0
4 x1 x3 + x0 x3+ x2 x2
5 x3 + x1 x3 + x2 + x0 x3+ x2 + x1 x2+ x0
6 x2 + x1 x3 + x1 + x0 x2+ x0 x3+ x2
7 x3 + x2 + x1 x3+ x2 + x1 + x0 x2+ x1 + x0 x3 + x2 + x0
8 x3 + x0 x3 + x2 x2+ x1 x1
9 x0 x3 x2 x1+ x0
A x3 + x2 + x0 x3 + x2 + x1 x3+ x2+ x1 + x0 x3+ x1
B x2 + x0 x3 + x1 x3+ x2 + x0 x3 + x1 + x0
C x3 + x1 + x0 x2 + x0 x3+ x1 x2+ x1
D x1 + x0 x0 x3 x2 + x1 + x0
E x3 + x2 + x1 + x0 x2 + x1 + x0 x1+ x0 x3 + x2 + x1
F x2 + x1 + x0 x1 + x0 x0 x3 + x2+ x1 + x0
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A xð Þ ¼ A:xT ¼

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
an1 an2 ⋯ ann

2
66664

3
77775 :

x1
x2
⋯
⋯
xn

2
66664

3
77775;

where x= (x1, x2,⋯, xn)
T, xi2 {0, 1}m, i = 1, . . ., n. Also, n

represents the number of S-boxes in a diffusion layer A,
where the size of each input and output of each S-box
is m-bit [4]. The elements of matrix A may be in GF(2m)
(especially in GF(28) or in GF(2)). The branch number of
an n� n matrix A is defined by

b Að Þ ¼ min wt xð Þ þ wt A:xT
� �� ��x 2 0; 1f gmð Þn; x 6¼ 0g

The Hamming weight of a code word c is the number of
nonzero components in c and denoted by wt(c). In addition,
the Hamming distance between two vectors (or code
words) from the dimensional vector space is the number
of positions (out of ) by which the two vectors differ [21].

A linear [n, k, d]-code over GF(2m) is a k-dimensional
subspace of the vector space (GF(2m))n, where the Ham-
ming distance between two distinct n-element vector is at
least d, and d is the largest number with this property
[16]. A generator matrix G for a linear [n, k, d]-code C
is a k� n matrix whose rows form a basis for C. Linear
[n, k, d]-codes obey the Singleton bound, d≤ n� k+1 [21].

Lemma 1. A code meets the Singleton bound, namely d⩽
n� k+ 1, which is called a Maximum Distance Separable
or MDS code. Alternatively, an [n, k, d]-error correcting
code with generating matrix G= [Ik� k|A], where Ikxk is
the k� k identity matrix, and A is a k� (n� k) matrix, is
MDS if and only if every square submatrix formed from
i rows and i columns, 1≤ i≤min{k, n� k}, of A is
nonsingular [21], [24].
Security Comm. Networks 2014; 7:53–63 © 2012 John Wiley & Sons, Ltd.
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In order to check the condition in Lemma 1, one should
determine determinants of all square submatrices of an
n� n square matrix with elements in GF(2m). The number
of these determinants is given by Equation (2).

Xn�2

k¼1

C
n

n� k

� �� 	2
(2)

For example, from Equation (2), one can determine the
number of 3� 3 submatrices as 16 and the number of
2� 2 submatrices as 36 for a 4� 4 matrix and, therefore,
in order to check that we have a 4� 4MDSmatrix, the total
number of the determinants of the submatrices to be
searched for is 52.

In the literature, generally, there are four approaches for
the construction of MDS matrices. The first approach is
related with the use of circulant matrices, where each row
is a rotated instance (by a single unit) of the neighboring
rows in the same direction. The second one is related with
the use of some heuristics for the construction of low
implementation-cost MDS matrices as stated in [25]. The
third one is related with the use of Hadamard matrices
for the construction of involutory MDS matrices. For
example, whereas a 4� 4 circulant MDS matrix is used
in the block cipher AES, an 8� 8 involutory MDS matrix
(Hadamard matrix) is used in the block cipher Khazad.
Finally, the fourth approach is a random construction of
MDS and involutory matrices [24]. From the viewpoint
of security, 4� 4, 8� 8, and 16� 16 MDS matrices
provide the optimal branch numbers of 5, 9, and 17,
respectively [17], [20], [21].

A= circ(a1, a2, . . ., an) is circulant matrix, where each
row vector is rotated one position to the right relative to
the preceding row vector and therefore A is an n� n
dimensional matrix as shown in Equation (3).
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A ¼

a1 a2 ⋯ an
an a1 ⋯ an�1

⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
a2 a3 ⋯ a1

2
66664

3
77775
n�n

(3)

Lemma 2. Let a1, a2, . . ., at be elements of GF(2
m). Then

a1 þ a2 þ . . .þ atð Þ2k ¼ a2
k

1 þ a2
k

2 þ . . .þ a2
k

t (4)
Lemma 3.

Let A¼Had a1; a2; a3; a4ð Þ¼
a1 a2 a3 a4
a2 a1 a4 a3
a3 a4 a1 a2
a4 a3 a2 a1

2
664

3
775

be a 4� 4 Hadamard matrix with the elements of GF(2m).
Also, let the elements be distinct and different from zero.
Then, A is an involutory MDS matrix if and only ifP4

i¼1 ai ¼ 1, where the addition between indices is modulo 2
addition or XOR operation and every square submatrix of
A is nonsingular (its determinant is not equal to 0) inGF(2m).
Proof. From Lemma 1, if every square submatrix of A is
nonsingular, then it is a necessary and sufficient condition
to ensure that the matrix A is MDS. On the other hand, as
shown in Equation (5), we obtain identity matrix ifP4

i¼1 a
2
i ¼ 1.

A2 ¼
a1 a2 a3 a4
a2 a1 a4 a3
a3 a4 a1 a2
a4 a3 a2 a1

2
664

3
775:

a1 a2 a3 a4
a2 a1 a4 a3
a3 a4 a1 a2
a4 a3 a2 a1

2
664

3
775

¼

P4
i¼1a

2
i ¼ 1 0 0 0
0

P4
i¼1a

2
i ¼ 1 0 0

0 0
P4

i¼1a
2
i ¼ 1 0

0 0 0
P4

i¼1a
2
i ¼ 1

2
6664

3
7775

(5)

Using Lemma 2, we also obtain
P4

i¼1a
2
i ¼

P4
i¼1ai ¼ 1.

Because A is unitary (A� 1 =A) and symmetric (A=AT), the
matrix A is involutory and MDS.

Lemma 4. Let A11 be any nonsingular n
2 � n

2 matrix with

elements from GF(2m). Then, the n� n matrix Ai ¼
A11 A�1

11
A3
11 þ A11 A11

� 	
is an involutory matrix over GF(2m)

[24].

One can easily show that Lemma 3 is valid for any n� n
matrix over GF(2m) and if we test matrix Ai given in Lemma
4 for the constraint given in Lemma 1, then we can obtain
involutory MDS matrices.

Two n� n binary matrices A,B are permutation
homomorphic to each other if there exists a row permuta-
tion r and a column permutation g satisfying [26]
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r g Að Þð Þ ¼ g r Að Þð Þ ¼ B (6)

Lemma 5. If two matrices A, B are permutation homo-
morphic to each other, then A, B are of the same branch
number [26].

By Lemma 5, the branch number is the same for any
row or column permutation; thus, many matrices can be
constructed by using a binary matrix having the optimal
branch number value. On the other hand, we define
two special permutations to be used in the next sections.
These are:

(1) to rotate cyclically l bits, where l2 {1, . . ., n� 1}, to
the right of all rows of an n� n binary linear
transformation,

(2) to rotate cyclically l bits, where l2 {1, . . ., n� 1}, to
the downwards of all columns of an n� n binary
linear transformation.
4. FIXED POINTS IN LINEAR
TRANSFORMATIONS

The importance of the number of fixed points in linear
transformations is given in [13]. In that study, it is also
stated that if the number of fixed points in a linear transfor-
mation greatly exceed the expected number for a random
linear transformation, then this is an indication of poor
diffusion of the linear transformation because the bits in
these blocks are left unchanged when producing the output
blocks. Note also that the expected number of fixed points
in a random permutation is one [13], [27].

Consider an input block to a linear transformation
formed by m-bit values in the field GF(2m) and let the
linear transformation matrix be an n� n matrix and I be
an n� n identity matrix. Then, the set of all fixed points
for that linear transformation, which can be represented
by a nonsingular matrix A, can be obtained by solving
the following equation:

A� Ið ÞxT ¼ 0 (7)

where 0 is the all-zero vector of length n. Hence, the
number of fixed points can be given as

FA ¼ 2m rank Að Þ�rank A�Ið Þð Þ ¼ 2m n�rank A�Ið Þð Þ (8)

From Equation (8), it is clear to see that if the A-I matrix
has bigger rank, then the linear transformation A has the
less number of fixed points. In [13], the diffusion measure
based on the number of fixed points is applied to the linear
transformations of several SPN ciphers: the AES, ARIA,
PRESENT [28], and Serpent [29]. It is shown that the lin-
ear transformation of all ciphers except Serpent have more
fixed points than the expected number for a random linear
transformation. For example, the 16� 16 binary linear
ecurity Comm. Networks 2014; 7:53–63 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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transformation of the ARIA includes 272 fixed points
because the rank of the AARIA� Imatrix is 7. Also, we have
found that the 8� 8 binary linear transformation of the
Camellia includes 28 fixed points because the rank of the
ACamellia� I matrix is 7.
5. ALGEBRAIC CONSTRUCTION
OF 8�8 BINARY LINEAR
TRANSFORMATIONS

In this section, for the algebraic construction of 8� 8
binary linear transformations, we use 2� 2 matrices with
the elements in GF(24). These linear transformations are
constructed by transforming 2� 2 matrices into binary
form by using Table II, and the constructed binary matrices
are both involutory and non-involutory matrices with
branch number 5.

When constructing an 8� 8 non-involutory binary ma-
trix, we look for 2� 2 matrices that satisfy three restric-
tions simultaneously;

(1) Be MDS,
(2) Be circulant or Hadamard matrix,
(3) The binary matrix, ABinary, transformed from 2� 2

matrix should have branch number of 5 and the rank
of ABinary� I matrix will be 8.

In Example 2, how we obtain the binary matrix by
transforming a possible 2� 2 matrix satisfying the restric-
tions earlier is shown in detail.

Example 2. Let M ¼ circ 8h;Bhð Þ ¼ 8h Bh

Bh 8h

� 	
be MDS

and 2� 2 circulant type matrix. Consider the matrix
multiplication next, where x0 = (f3, f2, f1, f0), x1 = (f7, f6, f5, f4)
represent input vectors and y0 = (z3, z2, z1, z0), y1 = (z7, z6, z5, z4)
represent output vectors formed by 4-bit values and therefore
(f7, f6, . . ., f0, z7, z6, . . ., z0)2GF(2).

yo
y1

� 	
¼ 8h Bh

Bh 8h

� 	
:
xo
x1

� 	
:

By using Table II, we can write matrix multiplication
earlier in binary form as shown next:

z0 ¼ f1 þ f4 þ f5 þ f7;
z1 ¼ f1 þ f2 þ f4 þ f6 þ f7;
z2 ¼ f2 þ f3 þ f5 þ f7;
z3 ¼ f0 þ f3 þ f4 þ f6;
z4 ¼ f0 þ f1 þ f3 þ f5;
z5 ¼ f0 þ f2 þ f3 þ f5 þ f6;
z6 ¼ f1 þ f3 þ f6 þ f7;
z7 ¼ f0 þ f2 þ f4 þ f7;

where + operation denotes modulo 2 addition or XOR
operation. Then, the multiplication results can be written in
the form of Z=A.F, which can be shown as next:
Security Comm. Networks 2014; 7:53–63 © 2012 John Wiley & Sons, Ltd.
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z0
z1
z2
z3
z4
z5
z6
z7

2
66666666664

3
77777777775
¼

0 1 0 0 1 1 0 1
0 1 1 0 1 0 1 1
0 0 1 1 0 1 0 1
1 0 0 1 1 0 1 0
1 1 0 1 0 1 0 0
1 0 1 1 0 1 1 0
0 1 0 1 0 0 1 1
1 0 1 0 1 0 0 1

2
66666666664

3
77777777775
:

f0
f1
f2
f3
f4
f5
f6
f7

2
66666666664

3
77777777775
;

where Z= (z7, z6, . . ., z0) and F= (f7, f6, . . ., f0). The binary
matrix A shown earlier has branch number of 5 and
one fixed point. On the other hand, if the input elements
f7, f6, . . ., f0 are in GF(28), then we obtain a 64-bit to a
64-bit linear transformation with good cryptographic
properties.

When constructing an 8� 8 involutory binary matrix,
we look for 2� 2 matrices that satisfy three restrictions
simultaneously;

(1) Be MDS,
(2) Be involutory and randommatrix given in Lemma 4,
(3) The binary matrix, ABinary, transformed from

2� 2 matrix should have branch number of 5
and the rank of ABinary� I matrix will be 4. There-
fore, if it is used as a 64-bit to a 64-bit linear
transformation, where each input element is in
GF(28), the binary linear transformation will have
232 fixed points.

In Example 3, we give a possible 2� 2 matrix
satisfying the restrictions (1) and (2) earlier and 8� 8
binary matrix obtained from that matrix satisfying the
restriction (3).

Example 3. Let M ¼ Eh 3h
6h Eh

� 	
be involutory MDS and

2� 2 random type matrix. Using the same procedure given
in Example 2, we can obtain an involutory 8� 8 binary
matrix as a diffusion layer, as shown next, with the proper-
ties stated in the restriction (3) earlier.

A ¼

0 1 1 1 1 0 0 1
1 1 0 0 1 1 0 1
1 1 1 0 0 1 1 0
1 1 1 1 0 0 1 1
0 0 1 1 0 1 1 1
1 0 1 0 1 1 0 0
1 1 0 1 1 1 1 0
0 1 1 0 1 1 1 1

2
66666666664

3
77777777775
:

On the other hand, by the special permutation 1 given
in Section 3, it is possible to obtain new matrices by
cyclically rotating l bits, where l2 {1, . . ., 7}, to the right
of all rows of an 8� 8 binary linear transformation. For
example, if we rotate cyclically 1 bit to the right of
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all rows of the binary linear transformation earlier, we
obtain a non-involutory binary linear transformation,
A(1) shown next, having one fixed point with branch
number 5:

A 1ð Þ ¼

1 0 1 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 1 1 1 1 0 0 1
1 0 0 1 1 0 1 1
0 1 0 1 0 1 1 0
0 1 1 0 1 1 1 1
1 0 1 1 0 1 1 1

2
66666666664

3
77777777775
:

6. ON THE PRODUCTIVITY OF
THE PROPOSED METHOD FOR
8�8 BINARY LINEAR
TRANSFORMATIONS

In order to obtain the productivity of the proposed
method for 8� 8 binary linear transformations, we have
searched for all possible 2� 2 nonsingular matrices,
which can be transformed into the binary form with
branch number 5. In Appendix C, we show the obtained
involutory and non-involutory 2� 2 matrices with the
elements from GF(24) defined by the primitive polyno-
mial x4 + x+ 1. It should be also noted that, in Appendix
C, the matrix (x, y, z, t), where x, y, z, t2GF(24), repre-

sents the 2� 2 matrix
x y
z t

� 	
.

By Lemma 5, many binary matrices with optimal
branch number can be generated by using any row or
column permutation from binary matrices, which are
transformed from given 2� 2 matrices. For example, if
we apply special permutations 1 and 2 together, given
in Section 3, which are related with cyclically rotating
from 0 to 7 bits to the right of all rows of an 8� 8
binary linear transformation and cyclically rotating from
0 to 7 bits downwards of all columns of an 8� 8 binary-
linear transformation, we can generate 63 matrices more
from one binary matrix, and therefore, totally, 1024
matrices (16� 64) can be generated. Here, the reason
of multiplying 64 by 16 is that we take into account
eight involutory matrices and eight out of 16 non-
involutory matrices because each two non-involutory
matrices, as shown in Appendix C, are related with each
other by a combination of special permutations 1 and 2.
Moreover, we have noticed that 64 out of these 1024
matrices are involutory. The reason is that any involutory
matrix provides seven more involutory matrices when
applying special permutations 1 and 2 together to an
involutory binary linear transformation.

On the other hand, in GF(24), there are two more irre-
ducible polynomials, which are x4 + x3 + 1 (also primitive
polynomial) and x4 + x3 + x2 + x+ 1. We have also searched
for all possible 2� 2 matrices, which can be transformed
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into the binary form with branch number 5, with elements
from GF(24) defined by primitive polynomial x4 + x3 + 1
and x4 + x3 + x2 + x+ 1. We have found new eight involu-
tory and 16 non-involutory matrices for the primitive
polynomial x4 + x3 + 1. But, we could not find any involu-
tory or non-involutory matrices, which can be transformed
into the binary form with branch number 5, with elements
from GF(24) defined by the irreducible polynomial
x4 + x3 + x2 + x+ 1.
7. ALGEBRAIC CONSTRUCTION OF
16�16 BINARY LINEAR
TRANSFORMATIONS

The ARIA cipher uses a 16� 16 binary linear transfor-
mation, which is an involution and has branch number
of 8 [26]. It has also 272 fixed points because the rank
of AARIA� I matrix is 7. On the other hand, the method
for the construction of ARIA type linear transforma-
tions can be found in [26], [30]. In this section, by
transforming 4� 4 matrices with elements in GF(24)
into binary form by using Table II, we construct
16� 16 binary linear transformations having 264 fixed
points and satisfying the same cryptographic properties
with that of the ARIA.

When constructing involutory 16� 16 binary matrices
with branch number 8, we look for 4� 4 matrices that
satisfy four restrictions simultaneously:

(1) Be MDS,
(2) Be involutory in Hadamard matrix form as given in

Lemma 3,
(3) The elements of 4� 4 matrix in GF(24) should be

chosen such that each row and each column of the
transformed binary matrix should have the Hamming
weight equal to 7 or 11.

(4) The binary matrix, ABinary, transformed from 4� 4
matrix should have branch number of 8 and the rank
of ABinary� I matrix will be 8.

In Examples 4 and 5, we give two examples of
involutory 16� 16 binary matrices satisfying the restric-
tions earlier. Also, whereas each row of the 16� 16 binary
matrix in Example 4 has the Hamming weight equal to 7,
each row of the 16� 16 binary matrix in Example 5 has
the Hamming weight equal to 11.

Example 4.

Let M ¼ Had 1h; 5h; 8h;Dhð Þ ¼
1h 5h 8h Dh

5h 1h Dh 8h
8h Dh 1h 5h
Dh 8h 5h 1h

2
664

3
775

be involutory MDS and the 4� 4 Hadamard type matrix.
Using the same procedure given in Example 2, we can
transform the 4� 4 matrix earlier into the 16� 16 binary
linear transformation as shown next:
ecurity Comm. Networks 2014; 7:53–63 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec



z0
z1
z2
z3
z4
z5
z6
z7
z8
z9
z10
z11
z12
z13
z14
z15

2
666666666666666666666666664

3
777777777777777777777777775

¼

1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0
0 1 0 0 0 1 1 1 0 1 1 0 0 0 0 1
0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 0
0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0
1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0
0 1 1 1 0 1 0 0 0 0 0 1 0 1 1 0
1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1
0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 1 1 0 1 0 0 0 1 0 1 0
0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1
0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1
1 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1
1 1 1 0 0 1 0 0 1 0 1 0 1 0 0 0
0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0
1 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0
1 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1

2
666666666666666666666666664

3
777777777777777777777777775

:

f0
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15

2
666666666666666666666666664

3
777777777777777777777777775

;

Algebraic construction of binary linear transformationsB. Aslan and M. T. Sakallı
where (f15, f14, . . ., f0)2GF(2) denotes the input bits and
(z15, z14, . . ., z0)2GF(2) denotes the output bits.
Example 5.

Let M ¼ Had Bh;Eh; 7h; 3hð Þ ¼
Bh Eh 7h 3h
Eh Bh 3h 7h
7h 3h Bh Eh

3h 7h Eh Bh

2
664

3
775 be

involutory MDS and 4� 4 Hadamard-type matrix. Using
the same procedure given in Example 4, we can transform
the 4� 4 matrix earlier into the 16� 16 binary linear trans-
formation in which each row has the Hamming weight equal
to 11. The obtained linear transformation is shown next:
A ¼

1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1
1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1
0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0
1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1
0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 1
1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 0
1 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1
1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1
1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0
1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0
0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1
1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1
1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1
0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1
0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0

2
666666666666666666666666664

3
777777777777777777777777775

:

By the special permutation 1 given in Section 3, it is
possible to obtain new matrices by cyclically rotating
l bits, where l2 {1, . . ., 15}, to the right of all rows of
a 16� 16 binary linear transformation. For example, if
we rotate cyclically 1 bit to the right of all rows of the
binary linear transformations given in Examples 4 and 5,
we obtain non-involutory binary linear transformations
having 216 and 224 fixed points, respectively, with
branch number 8, when these linear transformations map
Security Comm. Networks 2014; 7:53–63 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
a 128-bit input to a 128-bit output. The reason is that
the rank of A(1)� I matrices of them increases from 8 to 14
and 8 to 13, respectively. Note also that these transforma-
tions can process a 128-bit block when each input element
is in GF(28).
8. ON THE PRODUCTIVITY OF THE
PROPOSED METHOD FOR 16�16
BINARY LINEAR
TRANSFORMATIONS

In order to obtain the productivity of the proposed method
for 16� 16 binary linear transformations, we have searched
for all possible 4� 4 nonsingular Hadamard type, circulant
type, and random type matrices, which can be transformed
into the binary form with branch number 8.

For Hadamard type matrices, by using Lemma 3, we
show the obtained involutory matrices with the ele-
ments from GF(24) defined by the primitive polynomial
x4 + x + 1 in Appendix D. In Appendix D, each matrix
represents one member (representative) of 24 involutory
matrices because there are 24 (4!) permutations of any
59
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Had(x, y, z, t), where x, y, z, t2GF(24). We have noticed
that all 23 more binary matrices transformed from these
permuted elements of 4� 4 Hadamard matrices have
also branch number of 8. As a result, 576 (24� 24)
involutory matrices can be generated with branch num-
ber 8, and the rank value of ABinary� I matrices of all
involutory binary matrices is computed as 8. Moreover,
we have searched for all possible 4� 4 nonsingular
matrices with elements from GF(24) defined by x4 + x3 + 1
and x4 + x3 + x2 + x + 1, and found respectively 576 and
672 involutory matrices in the same manner with
branch number 8. When combining all results with
applying the special permutations 1 and 2 together, given
in Section 3, we can determine 29,184 (1824� 16)
involutory matrices and totally 466,944 (1824� 256)
both involutory and non-involutory binary matrices
with branch number 8 because it is possible to generate
255 more binary matrices, where 15 out of 255 matrices
are involutory matrices, from one binary matrix.

For circulant type matrices, on the other hand, we
have obtained respectively 96, 96, and 64 non-involutory
binary matrices with branch number 8 by transforming
4� 4 nonsingular matrices with elements from GF(24)
defined by x4 + x+ 1, x4 + x3 + 1 and x4 + x3 + x2 + x+ 1.
The rank value of ABinary� I matrices of all non-involutory
binary matrices is computed as 12. Moreover, we can
increase the number of cryptographically good binary
linear transformations by applying any row and column
permutation to each of them. With the application special
permutations 1 and 2 together; for example, we can gen-
erate 65,536 (256� 256) binary linear transformations
with branch number 8. In Appendix E, we give the list
of all 4� 4 circulant matrices, which can be transformed
into 16� 16 non-involutory binary linear transformations
with branch number 8, with the elements from GF(24)
defined by the primitive polynomial x4 + x+ 1. Notice
that, in Appendix E, the determinants of all circulant
matrices are equal to 1 because XOR sum of elements
in each row of any circulant matrix is equal to 1. That
means they are all nonsingular but not involutory
matrices.

For random type matrices, by using Lemma 4, we have
obtained several involutory matrices with branch number
8 by transforming 4� 4 nonsingular matrices with ele-
ments from GF(24) defined by x4 + x+ 1 and x4 + x3 + 1.
For irreducible polynomial x4 + x3 + x2 + x+ 1, we could
not find any involutory matrix with branch number 8. In
addition, we have noticed that these several involutory
matrices are also in the list obtained by Hadamard con-
struction. Therefore, in order to provide more accurate
information for the productivity of the method, we ignore
them.

Above all, we have computed the best rank value of
ABinary� I matrices of all obtained matrices as 15,
and therefore, if we use a binary linear transformation
with this rank value to map a 128-bit input to a 128-bit
output value, the linear transformation will only include 28

fixed points.
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9. SOFTWARE IMPLEMENTATIONS
OF THE PROPOSED BINARY LINEAR
TRANSFORMATIONS

Because the proposed linear transformations are binary
transformations with the input elements of GF(28) to be
used for processing a 64-bit block or a 128-bit block, the
implementation of the binary linear transformations is only
based on XOR operations. For example, to implement the
binary linear transformation given in Example 4 needs 96
XORs in a straight coding, but it is possible to reduce the
needed number of XOR operations by using additional vari-
ables. On the other hand, the binary linear transformation
given in Example 5 needs 160 XORs to be implemented.
But, adding one more variable to the implementation will
be enough to reduce the needed number of XOR operations
to 95.
10. CONCLUSIONS

In this paper, we have proposed a new algebraic construction
method for obtaining cryptographically good binary linear
transformations. When constructing these binary linear trans-
formations, we focused on two important cryptographic
criteria: the branch number and the number of fixed points.
We have obtained 8� 8 binary linear transformations with
maximum branch number 5 and one fixed point. Moreover,
the method for constructing 8� 8 involutional binary linear
transformations has been given. If the construction of
16� 16 binary linear transformations is concerned, we have
obtained involutional linear transformations with maximum
branch number 8 and 264 fixed points, and therefore, the
number of fixed points is reduced by a factor 28 than that of
the ARIA. On the other hand, by using the proposed method,
we have also shown in Section 8 that it is possible to generate
29,184 involutory binary matrices with branch number 8.

The constructed binary linear transformations are
resistant against linear and differential cryptanalysis
because they are designed to have the optimal branch
number value. But, for the other important attacks like
truncated differential cryptanalysis and impossible differ-
ential cryptanalysis, a further security analysis should be
performed on the given binary linear transformations and
then the use of these transformations is recommended.

On the other hand, as shown in Section 7, we have used
MDS matrices with elements in GF(24) for constructing
involutory 16� 16 binary matrices. But, we have also found
non-MDS involutory matrices likeHad(1h,Ch, 5h, 9h), which
can be transformed into the binary matrix of branch number
8. Therefore, in Appendix D and E, the list of 4� 4 matrices
is given by considering the property of being MDS or non-
MDS. In addition, roughly speaking, the decrease in the
number of fixed points for a linear transformation is provided
by non-involutory binary matrices. We have found many bi-
nary linear transformations, which are not an involution and
have the branch number of 8 with considerably reduced fixed
points. This idea is also supported by the given examples.
ecurity Comm. Networks 2014; 7:53–63 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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(7) (Eh, 3h, 6h,Eh)
⋄ (19) (7h,Ch,Ch, 7h)

*

(8) (Eh, 6h, 3h,Eh)
⋄ (20) (Ch, 7h, 7h,Ch)

*

(9) (2h,Eh,Eh, 5h)
* (21) (8h,Bh,Bh, 8h)

*

(10) (5h,Eh,Eh, 2h)
* (22) (Bh, 8h, 8h,Bh)

*

(11) (3h,Eh,Eh, 6h)
* (23) (Bh,Eh,Eh,Bh)

*

(12) (6h,Eh,Eh, 3h)
* (24) (Eh,Bh,Bh,Eh)

*

APPENDIX D

The list of all representatives of 4� 4 Hadamard matrices for
the x4 + x+1, which can be transformed into 16� 16 involu-
tory binary matrices with branch number 8. Note that, in
Appendices D and E, ? represents the given 4� 4 matrix,
which is MDS, and † represents the given 4� 4 matrix,
which is not MDS.

(1) Had(1h, 2h,Ch,Eh)
? (13) Had(3h, 4h,Bh,Dh)

?

Table . (Continued)
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APPENDIX A

The inverse of the given matrix in Example 2

A�1 ¼

1 0 1 1 1 1 0 0
1 1 1 0 0 0 1 0
1 1 1 1 0 0 0 1
0 1 1 1 1 0 0 0
1 1 0 0 1 0 1 1
0 0 1 0 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 0 1 1 1

2
66666666664

3
77777777775
:

APPENDIX B

The inverse of the given matrix in Example 3

A�1
1ð Þ ¼

0 1 1 0 1 1 1 1
0 1 1 1 1 0 0 1
1 1 0 0 1 1 0 1
1 1 1 0 0 1 1 0
1 1 1 1 0 0 1 1
0 0 1 1 0 1 1 1
1 0 1 0 1 1 0 0
1 1 0 1 1 1 1 0

2
66666666664

3
77777777775
:

APPENDIX C

The list of all 2� 2 matrices for the x4 + x+ 1, which can be
transformed into 8� 8 involutory and non-involutory
binary matrices with branch number 5. Note that ◊ repre-
sents the given 2� 2 matrix, which is involutory, and *
represents the given 2� 2 matrix, which is non-involutory.

(1) (3h, 5h,Ah, 3h)
⋄ (13) (5h, 3h, 3h,Ah)

*

(2) (3h,Ah, 5h, 3h)
⋄ (14) (Ah, 3h, 3h, 5h)

*

(3) (3h, 6h, Fh, 3h)
⋄ (15) (6h, 3h, 3h, Fh)

*

(4) (3h, Fh, 6h, 3h)
⋄ (16) (Fh, 3h, 3h, 6h)

*

(5) (Eh, 2h, 5h,Eh)
⋄ (17) (7h, 9h, 9h, 7h)

*

(6) (Eh, 5h, 2h,Eh)
⋄ (18) (9h, 7h, 7h, 9h)

*

(Continues)

(2) Had(1h, 3h, 5h, 6h)
? (14) Had(3h, 5h, 9h,Eh)

?

(3) Had(1h, 3h,Ch, Fh)
? (15) Had(3h, 5h,Ah,Dh)

†

(4) Had(1h, 3h,Dh,Eh)
? (16) Had(3h, 7h, 8h,Dh)

?

(5) Had(1h, 5h, 8h,Dh)
? (17) Had(3h, 7h,Ah, Fh)

?

(6) Had(1h, 5h, 9h,Ch)
† (18) Had(3h, 7h,Bh,Eh)

?

(7) Had(1h, 5h,Bh,Eh)
? (19) Had(4h, 6h,Ch, Fh)

?

(8) Had(1h, 7h,Bh,Ch)
? (20) Had(4h, 7h,Ch,Eh)

?

(9) Had(2h, 4h, 8h, Fh)
? (21) Had(4h, 7h,Dh, Fh)

?

(10) Had(2h, 4h,Ah,Dh)
? (22) Had(5h, 7h,Ch, Fh)

†

(11) Had(2h, 6h, 8h,Dh)
? (23) Had(9h,Ah,Dh, Fh)

?

(12) Had(3h, 4h,Ah,Ch)
? (24) Had(9h,Bh,Ch, Fh)

?

APPENDIX E

The list of all 4� 4 circulant matrices for the x4 + x+ 1,
which can be transformed into 16� 16 non-involutory
binary matrices with branch number 8.

(1) circ (1h, 1h,Ah,Bh) ? (49) circ (3h, 5h,Ah,Dh) †
(2) circ (1h, 1h,Bh,Ah) ? (50) circ (3h,Dh,Ah, 5h) †
(3) circ (1h,Ah,Bh, 1h) ? (51) circ (5h, 3h,Dh,Ah) †
(4) circ (1h,Bh,Ah, 1h) ? (52) circ (5h,Ah,Dh, 3h) †
(5) circ (Ah, 1h, 1h,Bh) ? (53) circ (Ah, 5h, 3h,Dh) †
(6) circ (Ah,Bh, 1h, 1h) ? (54) circ (Ah,Dh, 3h, 5h) †
(7) circ (Bh, 1h, 1h,Ah) ? (55) circ (Dh, 3h, 5h,Ah) †
(8) circ (Bh,Ah, 1h, 1h) ? (56) circ (Dh,Ah, 5h, 3h) †
(9) circ (1h, 2h,Eh,Ch) † (57) circ (3h,Bh, 4h,Dh) ?
(10) circ (1h,Ch,Eh, 2h) † (58) circ (3h,Dh, 4h,Bh) ?
(11) circ (2h, 1h,Ch,Eh) † (59) circ (4h,Bh, 3h,Dh) ?
(12) circ (2h,Eh,Ch, 1h) † (60) circ (4h,Dh, 3h,Bh) ?
(13) circ (Ch, 1h, 2h,Eh) † (61) circ (Bh, 3h,Dh, 4h) ?
(14) circ (Ch,Eh, 2h, 1h) † (62) circ (Bh, 4h,Dh, 3h) ?
(15) circ (Eh, 2h, 1h,Ch) † (63) circ (Dh, 3h,Bh, 4h) ?
(16) circ (Eh,Ch, 1h, 2h) † (64) circ (Dh, 4h,Bh, 3h) ?
(17) circ (2h, 4h,Dh,Ah) † (65) circ (4h, 6h,Eh,Dh) ?
(18) circ (2h,Ah,Dh, 4h) † (66) circ (4h,Dh,Eh, 6h) ?
(19) circ (4h, 2h,Ah,Dh) † (67) circ (6h, 4h,Dh,Eh) ?
(20) circ (4h,Dh,Ah, 2h) † (68) circ (6h,Eh,Dh, 4h) ?
(21) circ (Ah, 2h, 4h,Dh) † (69) circ (Dh, 4h, 6h,Eh) ?
(22) circ (Ah,Dh, 4h, 2h) † (70) circ (Dh,Eh, 6h, 4h) ?

(Continues)
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(23) circ (Dh, 4h, 2h,Ah) † (71) circ (Eh, 6h, 4h,Dh) ?
(24) circ (Dh,Ah, 2h, 4h) † (72) circ (Eh,Dh, 4h, 6h) ?
(25) circ (2h, 7h,Eh,Ah) † (73) circ (4h, 6h, Fh,Ch) ?
(26) circ (2h,Ah,Eh, 7h) † (74) circ (4h,Ch, 6h, Fh) †
(27) circ (7h, 2h,Ah,Eh) † (75) circ (4h,Ch, Fh, 6h) ?
(28) circ (7h,Eh,Ah, 2h) † (76) circ (4h, Fh, 6h,Ch) †
(29) circ (Ah, 2h, 7h,Eh) † (77) circ (6h, 4h,Ch, Fh) ?
(30) circ (Ah,Eh, 7h, 2h) † (78) circ (6h,Ch, 4h, Fh) †
(31) circ (Eh, 7h, 2h,Ah) † (79) circ (6h, Fh, 4h,Ch) †
(32) circ (Eh,Ah, 2h, 7h) † (80) circ (6h, Fh,Ch, 4h) ?
(33) circ (2h,Ah, 5h,Ch) ? (81) circ (Ch, 4h, 6h, Fh) ?
(34) circ (2h,Ch, 5h,Ah) ? (82) circ (Ch, 4h, Fh, 6h) †
(35) circ (5h,Ah, 2h,Ch) ? (83) circ (Ch, 6h, Fh, 4h) †

(Continues)

(36) circ (5h,Ch, 2h,Ah) ? (84) circ (Ch, Fh, 6h, 4h) ?
(37) circ (Ah, 2h,Ch, 5h) ? (85) circ (Fh, 4h,Ch, 6h) †
(38) circ (Ah, 5h,Ch, 2h) ? (86) circ (Fh, 6h, 4h,Ch) ?
(39) circ (Ch, 2h,Ah, 5h) ? (87) circ (Fh, 6h,Ch, 4h) †
(40) circ (Ch, 5h,Ah, 2h) ? (88) circ (Fh,Ch, 4h, 6h) ?
(41) circ (3h, 3h, 8h, 9h) ? (89) circ (5h, 7h,Ch, Fh) †
(42) circ (3h, 3h, 9h, 8h) ? (90) circ (5h, Fh,Ch, 7h) †
(43) circ (3h, 8h, 9h, 3h) ? (91) circ (7h, 5h, Fh,Ch) †
(44) circ (3h, 9h, 8h, 3h) ? (92) circ (7h,Ch, Fh, 5h) †
(45) circ (8h, 3h, 3h, 9h) ? (93) circ (Ch, 7h, 5h, Fh) †
(46) circ (8h, 9h, 3h, 3h) ? (94) circ (Ch, Fh, 5h, 7h) †
(47) circ (9h, 3h, 3h, 8h) ? (95) circ (Fh, 5h, 7h,Ch) †
(48) circ (9h, 8h, 3h, 3h) ? (96) circ (Fh,Ch, 7h, 5h) †

Table . (Continued) Table . (Continued)
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