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Abstract

We consider periodically modulated Su-Schrieffer-Heeger (SSH) model with gain and loss. This model, which can be realized

with current technology in photonics using waveguides, allows us to study Floquet topological insulating phase. By using Floquet

theory, we find the quasi-energy spectrum of this one dimensional PT symmetric topological insulator. We show that stable Floquet

topological phase exists in our model provided that oscillation frequency is large and the non-Hermitian degree is below than a

critical value.

1. Introduction

The discovery of topological insulators in 2D and 3D has

attracted a great deal of attention in the last decade [1]. A

topological insulator has gapless robust edge states while its en-

ergy spectrum is gapped in the bulk. Robust edge states, which

are protected against arbitrary perturbations, appear in time-

independent systems since the bulk energy gap closes when the

topologically nontrivial system is in contact with a topologi-

cally trivial one. We note that topological phase is not restricted

to two and three dimensional systems. Of special importance

in 1D topological insulators is the Su-Schrieffer-Heeger (SSH)

model [2, 3, 4], which is a tight-binding model with alternating

hopping amplitudes. On the contrary to 2D topological insu-

lators whose edge modes are propagating either chiral or heli-

cal modes depending on the topological invariant, edge modes

in 1D are accumulated at edges and decays rapidly away from

edges.

Over the past few years, the periodical table of topological in-

sulators was constructed for Hermitian Hamiltonians. Recently,

extension of topological phase to non-Hermitian systems has

also attracted considerable attention [5, 6, 7, 8, 9, 10]. We note

that a non-Hermitian Hamiltonian may admit real spectrum as

long as non-Hermitian degree is below than a critical number

and the Hamiltonian is PT symmetric, where P and T oper-

ators are parity and time reversal operators, respectively. Hu

and Hughes [5] and Esaki et. al. [6] investigated topologi-

cal phase in some non-Hermitian PT symmetric system at al-

most the same time. They concluded that topological phase

are not compatible in the PT symmetric region. In [5], the

authors discussed that non-Hermitian topological phases could

only be compatible for systems without Dirac-type Hamiltoni-

ans. A non-Hermitian generalizations of the Luttinger Hamil-

tonian and Kane-Mele model was considered in [6] and it was
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shown that robust zero energy edge states decay in time be-

cause of the imaginary part of energy eigenvalues. Although

the initial attempts failed, some other authors continued to find

stable topological phase in non-Hermitian systems [7, 8, 9].

But they found unstable topological phases. In 2015, Zhu,

Lu and Chen used SSH model with gain and loss [10]. They

found that the energy eigenvalues are real valued in topologi-

cally trivial region while they become complex valued in topo-

logically nontrivial region. Fortunately, one of us found sta-

ble topological phase in a non-Hermitian Aubry-Andre model

for the first time in 2015 [11]. A year later, an experiment

was realized [12] and confirmed the theoretical prediction of

[11]. In the experiment [12], lossy waveguides were used and

states that are localized at the interface between two topolog-

ically distinct PT -symmetric photonic lattices were observed

through fluorescence microscopy. After the first experimen-

tal realization, the topic of topologically insulating phase in

non-Hermitian systems has attracted great attention. In 1D,

non-Hermitian topological phase was studied by various au-

thors [13, 14, 15, 16, 17]. It was shown in [18] that topolog-

ical insulating phase can also be realized only by gain and loss.

Topological phase was also investigated for a generalized non-

Hermitian Su-Schrieffer-Heeger model [19]. It is interesting to

note that complex Berry phase in non-Hermitian systems was

calculated numerically [20]. Chiral topological edge modes in

a non-Hermitian variant of the 2D Dirac equation was studied

in [21]. Non-Hermitian topological superconductor and Ma-

jarona modes have recently been investigated by some authors

[22, 23, 24, 25, 26]. The topic of non-Hermitian extension of

topological phase is still in its infancy and there are some open

problems such as bulk-boundary correspondence and topologi-

cal invariants in non-Hermitian systems.

Standard classification of topological insulators and supercon-

ductors, which tells us topological invariant for a given Hamil-

tonian in any dimension by looking at the three discrete symme-

tries fails if the system is time-dependent. Another kind of topo-

logical insulator that appears in time-periodic system is called
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Floquet topological insulator [27, 28, 29]. Floquet topologi-

cal phase has been extensively studied for Hermitian systems.

However, there has been few theoretical [30, 31] and experi-

mental [32, 33, 34] papers in non-Hermitian systems. The the-

oretical model proposed in [30] includes z-dependent gain and

loss term in the Hamiltonian. Although Floquet topological

phase appears in such a model, it is not experimentally feasi-

ble since gain and loss changes periodically with propagation

distance. In this Letter, we propose an experimentally feasible

theoretical model for the observation of topological Floquet in-

sulator in a non-Hermitian system. Our model can be tested

with current technology on photonic lattices.

2. Model

The Su-Schrieffer-Heeger (SSH) model is a two band model

that describes spinless fermions hopping on a 1D tight bind-

ing lattice with staggered tunneling amplitudes. This model

and Aubry-Andre model [35] are extensively used models in

the study of topological phase in one dimension. It is well

known that the SSH model has two different topologically dis-

tinct dimerized states. Topological zero energy states appears

at the interfaces between these two distinct states. In this study,

we consider a variant of the SSH model to search for Floquet

topological phase in a non-Hermitian system. Let us first dis-

cuss the non-Hermitian character of our 1D tight binding sys-

tem. In the experiment [12], alternating gain and loss are intro-

duced into the system to make the Hamiltonian non-Hermitian.

Here we consider that two non-Hermitian impurities (gain and

loss) are arranged at symmetrical sites with respect to the cen-

ter of the lattice, i.e., particles are injected on the j-th site and

removed from the (N − j + 1)-th site, where N is the number of

lattice sites. Generally speaking, the main difference between

the two cases is that the critical non-Hermitian strength below

which the corresponding spectrum is real becomes bigger in

our case. To study Floquet topological transition in our non-

Hermitian system, we further suppose that the system is modu-

lated periodically. In [27, 29], tunneling amplitude is supposed

to change periodically in time to study Floquet topological in-

sulator. Here we use another model. We suppose that potential

gradient changes periodically with longitudinal distance. This

is a more realistic consideration from the experimental point

of view in PT symmetric photonics systems. The Hamiltonian

reads

H = −T

N−1∑
n=1

(1 + λ cos (πn + Φ)) a†nan+1 + h.c.

+

N∑
n=1

f (z)(n − n0)a†nan + iγ(a
†

j
a j − a

†

N− j+1
aN− j+1) (1)

where T is unmodulated tunneling amplitude which is assumed

to be real valued, f (z) is the real valued z-dependent potential

gradient, a†n and an denote the creation and annihilation op-

erators of particles on site n, respectively and the parameter

γ represents non-Hermitian degree describing the strength of

gain/loss material that is assumed to be balanced in the system.

The constant n0 determines the zero point of the corresponding

term (n0 = N/2 for even N and n0 = (N + 1)/2 for odd N ) and

the constant λ is the strength of the modulation. The first term

in the Hamiltonian corresponds to the usual SSH model and the

term with f (z) accounts for the periodical driving. The last term

is the non-Hermitian potential due to two non-Hermitian impu-

rities. As it is usual on the topic of topological insulator in 1D,

the modulation phase Φ is an additional degree of freedom. We

emphasize that an experiment described by the above Hamilto-

nian can be realized with current technology. Such an experi-

ment, which will be the first one to observe Floquet topological

insulator in a non-Hermitian system, can check our findings.

Let us first discuss the PT symmetry of the above Hamiltonian

qualitatively. The standard SSH model is Hermitian and PT

symmetric. With the inclusion of non-Hermitian impurities at

the symmetrical points, the PT symmetry is still not lost in the

system. This picture generally changes in the presence of the

linearly changing modulation. It is easy to see that such a term

breaks the translational invariance of the system. Fortunatelly,

the PT symmetry is still restored if f (z) is chosen specifically

as follows

f (z) = κ ω sin(ωz + φ) (2)

where ω is the modulation frequency, φ is the initial phase and

the constant κ ω is the amplitude. As a result, we say that the

PT symmetry is not broken in our system. So, one expects that

the system may have a non-zero threshold of γ for spontaneous

PT symmetry breaking.

Although our system is PT symmetric, associated topological

symmetries are broken in our system. In fact, the term with

f (z) breaks the discrete symmetries that the standart SSH model

have. As it is well known in the theory of topological insula-

tors, the standart SSH model has time reversal, particle-hole and

chiral symmetries. This makes the SSH model BDI class in the

standard topological classification. In the SSH model, topologi-

cal transition occurs at λ = 0. More specifically, the SSH model

is Z topologically trivial (nontrivial) when λ > 0 (λ < 0). With

the additional term with f (z) into the Hamiltonian, no topolog-

ical phase appears since the discrete symmetries are broken. In

1D, a Hamiltonian without these three discrete symmetries is

topologically nontrivial according to the standard classification

of topological insulator. However, we can instead study Floquet

topological phase. It is well known that there are some time pe-

riodical systems where the system has no topological phase but

Floquet topological phase. More specifically, Floquet topolog-

ical phase appears in a system if not the original system but the

effective system has desired discrete symmetries.

To look for Floquet topological phase in our non-Hermitian sys-

tem, we should find the corresponding effective Hamiltonian in

high frequency regime. Below we first perform analytical cal-

culation and find the corresponding effective Hamiltonian. Af-

ter getting some analytical notion in the high frequency limit,

we will then perform numerical computation. We will numer-

ically show that topological phase is not possible in the low

frequency limit.

Consider the Hamiltonian (1). A common way in the studies of

high frequency Floquet systems is to find a time-independent

2



effective Hamiltonian. As it is discussed in [36], the tunnel-

ing parameter is replaced by an effective tunneling amplitude,

Te f f . in the high-frequency domain. With application of the

high-frequency Floquet approach, the Hamiltonian (1) can then

effectively be described as

He f f . = −Te f f .

N∑
n=1

(1 + λ cos (πn + Φ)) a†nan+1 + h.c.

+

N∑
n=1

iγ(a
†

j
a j − a

†

N− j+1
aN− j+1) (3)

where the effective tunneling is given by

Te f f . = T

∫ z

0

eiηdz′ = TJ0(κ) (4)

where overline denotes the average over z and η is given by

η(z) =

∫ z

0

f (z′) dz′. Here, we have used a useful expansion of

the oscillatory term eiη in terms of Bessel functions by using the

Jacobi-Anger expansion; eiκ sin(x) =
∑

m

Jm(κ)eimx, where Jm is

the m-th order Bessel function of first kind. Note that the peri-

odical z-dependent term is absent in the effective Hamiltonian.

Since the effective Hamiltonian is z-independent, one would use

standart classification of topological insulators to study the ex-

istence of topological phase in the effective system if the Hamil-

tonian is Hermitian.

If we compare the original and effective Hamiltonians, we

say that the presence of the monochromatic modulation cor-

responds to a modification of the tunneling amplitude at the

expense of absence of the z-dependent modulating term in the

original Hamiltonian. The scaling factor is given by Bessel

function. In the absence of z-dependent modulation, κ = 0,

the Bessel function takes its maximum value, J0(0) = 1. We

note that the Bessel function J0(κ) is roughly like an oscillat-

ing sine function that decays proportionally as κ increases. At

some certain values of κ, the Bessel function becomes equal to

zero. In other words, no particle can tunnel to the neighboring

sites. This effect is known as the dynamical localization effect

since tunneling is suppressed dynamically. The first zeros of the

Bessel function happens at κ = 2.405. At this value, our system

admits complex energy spectrum. If κ is increased above from

this value, then tunneling is partially restored and the spectrum

becomes real as long as the non-Hermitian degree is below than

a critical number, γ < γPT .

The above approach, which is valid only in high frequency

regime is the basis of Floquet topological phase. The origi-

nal Hamiltonian (1) does not have topological phase since the

discrete symmetries are broken. However, the effective Hamil-

tonian (3) in the high frequency regime is just the SSH model

with gain and loss. As it was discussed in our previous paper

[11], there exists topological zero energy modes for this effec-

tive Hamiltonian. An experiment on the SSH model with gain

and loss was also realized and topological modes were observed

in [12]. The region of nontrivial topological phase depends on

whether the number of lattice sites is odd or even. More specif-

Figure 1: Numerical calculations of the real part of the energy and quasi-energy

spectra for the parameters T = 1, λ = 0.4, κ ω = 0.05, γ = 0.2, j = 2 and

N = 40 sites as a function of Φ. The top figure at the left is for z-independent

case with κ = 0, while the one at the right is for a small modulation frequency

ω = 0.2π. The lower two figures at left and right are for an intermediate and

a high value of the modulation frequencies, respectively: ω = 0.8π (left) and

ω = 45π (right). As can be seen, topological zero energy modes exist for κ = 0.

The PT symmetry is spontaneously broken for small and intermediate values

of the modulation frequency. Therefore the spectrum becomes complex valued.

The PT symmetry is restored and stable Floquet topological edge states appear

for large values of ω.

ically, zero energy edge states appear for all Φ (for all Φ ex-

cept π/2 < Φ < 3π/2) if N is odd (even). We note that these

zero states are localized around the two edges of the system. It

was shown that this is true even when two non-Hermitian im-

purities are introduced into the system [11]. The reality of the

energy spectrum depends dramatically on the position of non-

Hermitian impurities. If they are placed exactly at the edges,

then the critical non-hermitian degree, γPT is exactly equal to

zero. If they are placed away from the edges, then γPT takes

finite values. We note that γPT becomes maximum when the

non-Hermitian impurities are placed at the neighboring sites of

edges, j = 2. As a result, we say that not the original Hamil-

tonian but the effective Floquet Hamiltonian has topological

phase, which appears in the high frequency limit. The main

finding of this paper is that our system has nontrivial Floquet

topological edge states in the un-brokenPT symmetric region.

So far, we have analyzed our system analytically in the high

frequency regime. Below, we will explore the energy spectrum

numerically in the full regime and discuss the validity of our

analytical approach. We will also discuss topological transition

in our system.

It is instructive to briefly introduce the basic ideas of the Flo-

quet formalism used to deal with time dependent (z-dependent

in our case) periodic Hamiltonians. Consider a non-Hermitian

periodical Hamiltonian in the propagation direction with the

period T , H(z) = H(z + T ). The energy spectrum of a pe-

riodical Hamiltonian can be found using the Floquet theory.

According to the Floquet theorem, there exists solutions of

the form ψα = e−iǫαz Φα, where Φα(z) is the periodical Flo-

quet eigenstate and the z-independent eigenvalues ǫα are the

Floquet quasi energies. Note that the quasi energies are con-
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stants. The Floquet spectrum is 2π/T periodic in quasi energy

just as a repeated zone scheme in quasi momentum for conven-

tional band structure. The dynamics of the periodically driven

system is obtained by solving the Floquet-Schrodinger equa-

tion HFΦα = ǫΦα, where we define the Floquet Hamiltonian

as HF = H − i∂/∂z. The Floquet states are periodical so they

satisfy Φαn = Φαeinωz, where orthonormality condition reads

<< Φαn|Φβm >>= 1/T
∫ T

0
< Φαn|Φβm > dz = δαβδmn and

the second bra-ket notation here is used to denote the integra-

tion over the propagation direction z. Of particular interest for

a non-Hermitian periodical Hamiltonian is the situation when

all quasi energies are real. We will numerically find quasi en-

ergy spectrum for our non-Hermitian Hamiltonian. In practice,

a truncated Floquet Hamiltonian is used in our numerical com-

putation. The corresponding matrix is a 2(2NF+1)×2(2NF+1)

matrix, where NF is large enough that the result doesn’t depend

on NF . Below we present our result for various values of the

frequency ω.

Let us first review the z-independent case with κ = 0. In this

case, the system has two bands and zero energy states appear.

Consider first the Hermitian limit, γ = 0. In this case, the sys-

tem has maximum band gap at Φ = 0. The band gap closes

and reopens as Φ is varied. Remarkably, zero energy states ap-

pear in the spectrum if either 0 < Φ < π/2 or 3π/2 < Φ < 2π

when the total site number is even as can be seen from the fig-

ure. Note that they would appear in the whole region of Φ if

N is odd. It is well known that these topological zero-energy

states are localized around the two edges of the system. Con-

sider now the presence of non-Hermitian term in the Hamilto-

nian, γ , 0. Topological zero energy states exist even in the

presence of the gain and loss. The corresponding energy eigen-

values are real for z-independent case κ = 0 as long as γ is

smaller than a critical value γPT , which depends on the pa-

rameters in the Hamiltonian and decreases with the site num-

ber N. The z-dependent term with κ , 0 breaks the PT sym-

metry spontaneously. The corresponding quasi-energy eigen-

values become completely complex valued if the modulation

frequency is small. At intermediate values of the modulation

frequency, they are partially complex valued. For large val-

ues of ω, the PT symmetry is restored and the spectrum be-

comes real valued again. As can be seen from the top-right plot

in the Fig.1, the energy band changes dramatically and stable

topological zero energy modes are lost for small values of ω.

This is because of the fact that discrete symmetries are broken

with the z-dependent term in the Hamiltonian and chiral topo-

logical phase no longer exists in the system. As can also be

seen from the figure, the spectrum is highly complicated and

standard band gap structure is lost. The lower-left figure plots

the spectrum for an intermediate value ω = 0.8π. To observe

Floquet topological edge states, which are immune to disorder,

we perform one more numerical computation at ω = 4π. We

are now in high frequency regime and can confirm our the-

oretical prediction. Since we choose a small value of κ, we

get J0(κ = 0.1/4π) = 0.999. This means that the effective tun-

neling amplitude is almost equal to original tunneling ampli-

tude. In other words, the spectrum of unmodulated case and the

quasi-energy spectrum of modulated case almost coincide. This

can be seen from the top-left (κ = 0) the lower-right (ω = 4π)

plots in the figure-1. As can be seen, they are almost identical

and both admit zero energy states. This shows that the numer-

ical result is in agreement with our analytical prediction. The

Floquet topological zero energy states are stable as long as γ

is below than a critical number and non-Hermitian impurities

are not located exactly at edges in a lattice with even number

of total lattice sites. We emphasize that PT symmetry is auto-

matically broken if N is odd and hence the spectrum is always

complex valued for γ , 0. The brokenPT symmetry can easily

be seen if one considers that the lattice sites at the left and right

edges couple to their neighboring sites with different tunneling

amplitudes if N is odd.

To conclude, we have studied 1D tight binding lattice with gain

and loss. Our model is a variant of SSH model and can be re-

alized with current technology in photonics using waveguides.

We have shown that stable Floquet topological phase exists in

our model provided oscillation frequency ω is large and the

non-Hermitian degree γ is below than a critical value. Our sys-

tem is a candidate for the experimental realization of Floquet

topological phase in non-Hermitian photonics system.

This study is supported by Anadolu University Scientific Re-

search Projects Commission under the grant no: 11705F208
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