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1. Introduction
A biosensor is described as “a compact analytical device incorporating a biological or biologically derived sensing element 
either integrated within or intimately associated with a physicochemical transducer” [1]. Since the first biosensor con-
struction, various types of biological molecules including enzymes [2], antibodies [3], oligonucleotides [4], aptamers [5], 
tissue slides [6], and microorganisms [7] have been combined with a wide range of transducers such as amperometric [8], 
impedimetric [9], piezoelectric, acoustic [10], potentiometric [11], fluorescent [12] and colorimetric [13]. Antibodies have 
been abundantly used in the fabrication of biosensors named “immunosensors”, thanks to their ability to detect a specific 
antigen [14]. The method of electrochemical impedance spectroscopy (EIS) relies on measuring the impedance change 
caused by interactions between targets and bioreceptor [15]. The alterations on the electrode surface dramatically affect 
the signals obtained by EIS. Hence, EIS is widely used for monitoring antibody–antigen interactions in immunosensors 
along with nucleotide interactions on aptasensors or DNA biosensors [16]. Owing to their all-electrical nature, impedance 
biosensors are simpler than other methods used in biosensor construction. Moreover, since impedimetric transducers do 
not contain optical or acoustic components, they offer significant advantages for portable applications [17]. Immobiliza-
tion of antibodies on a transducer capable of measuring little changes on the surface is a bottleneck to construct a stable 
and robust immunosensor, because of the orientation problem of antibodies and their conformational stability on the 
surface [18]. Several immobilization methods such as self-assembled monolayers (SAM) [19], electropolymerization [20], 
site-directed techniques [21], silanization [22], and direct covalent binding [23] have been utilized in the fabrication of 
immunosensors to handle these problems [24]. Immunosensors offer a number of advantages over traditional analytical 
techniques, including portability, specificity, cheapness, and real-time monitoring, as well as having good versatility, ro-
bustness, selectivity, and sensitivity depending on the transducer [25]. Hence, immunosensors have exhibited a significant 
development in the immune-analytical field in the last decade, which facilitates sensitive and accurate determination of a 
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vast number of target molecules such as cancer biomarkers [26], pathogens [27], cardiac markers [28], drugs [29], pesti-
cides [30], toxins [31], and hormone [32].

Thyroid-stimulating hormone (TSH), a.k.a thyrotropin synthesized and secreted by thyrotrophic cells in the anterior 
pituitary gland, stimulates the production and the secretion of the thyroxin (T4) and triiodothyronine (T3) in the thyroid 
gland [33]. Since T3 and T4 hormones are employed as mediators in several metabolic processes, TSH levels can affect the 
whole metabolism indirectly [34]. The normal TSH levels in adults are between 0.4 and 4.2 mIU/L [35]. Therefore, rapid, 
reliable, and sensitive detection of TSH levels is crucial for the diagnosis of thyroid gland-related diseases such as hypothy-
roidism, Hashimoto’s thyroiditis, Graves’ disease, and hyperthyroidism [36], as well as cardiovascular diseases, metabolic 
syndrome, pituitary tumors, atherosclerosis [37]. In the last 2 decades, determination of TSH levels can be accomplished 
by using various techniques such as tandem mass spectrometry [38], liquid chromatography/mass spectrometry [39], 
infrared spectroscopy [40], ultrafiltration [41], chemiluminescent enzyme immunoassay [42], and affinity assisted im-
munoassay [43]. Although some of these methods present the limit of detection (LOD) lower than 0.5 mIU/L, these tech-
niques are troublesome, expensive, time-consuming, inappropriate for miniaturization, have tedious pretreatment steps 
and fabrication, demand sophisticated or heavy instruments, and require experienced personnel to operate [44]. These 
drawbacks can be overcome by immunosensors, which have characteristics including high sensitivity, specificity, and ac-
curacy, as well as being relatively cheap and having a short response time [45]. Along with these benefits, immunosensors 
have some limitations, including regeneration problems, fragile antigen–antibody interactions, and low stability [46,47]. 
Nevertheless, a number of immunosensors with different transducers such as voltammetric [33,35], potentiometric [48], 
impedimetric [49], and fluorimetric [50] were reported for the detection of TSH. 

This study aims to develop an impedimetric immunosensor for determining TSH by using SAM of 4-mercaptophenyl-
acetic acid (4-MPA) and a specific antibody of TSH named anti-TSH. Accurate and sensitive detection of TSH was accom-
plished by a nonlabeled immunosensor with a simple design. Furthermore, the proposed biosensor is the first biosensor 
that comparably performs TSH detection using four electroanalytical methods, including EIS, capacitance spectroscopy, 
linear sweep voltammetry (LSV), and cyclic voltammetry (CV). Additionally, experiments for repeatability, reproducibil-
ity, and standard addition in artificial human serum samples were also carried out. 

2. Materials and methods
2.1. Materials and reagents
1-ethyl-3-(3-dimetilaminopropil) carbodiimide (EDC), N-hydroxysuccinimide (NHS), 4-mercaptophenylacetic acid 
(4MPA), thyroid-stimulating hormone (TSH), thyroid-stimulating hormone antibody (anti-TSH), bovine serum albumin 
(BSA), and all the other chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA). In all experiments, prepara-
tion of solutions was carried out in certain solvents, including TSH and anti-TSH in ultrapure water (UPW), 4-mercapto-
phenylacetic acid (4-MPA) in absolute ethanol, as well as EDC, NHS, and BSA in 50 mM phosphate buffer at pH: 7.0. All 
dilutions and aliquots of TSH and anti-TSH were stored at −20 °C until use. A redox probe solution consisting of 5 mM 
Fe(CN)6

4− and 5 mM Fe(CN)6
3− was prepared in a 50 mM phosphate buffer system at pH: 7.0 that contained 0.1 M KCl as 

an electrolyte. The artificial serum solution was prepared in a 50 mM phosphate buffer system at pH: 7.5 by adding 2.5 mM 
urea, 0.1% human serum albumin, and 4.7 mM (D +)-glucose, as well as serum electrolytes including 4.5 mM KCl, 5 mM 
CaCl2, and 145 mM NaCl. The artificial serum solution was used without any dilution.
2.2. Instrumentation
All electrodes of the three-electrode system, including a gold working electrode, Pt wire as counter electrode, and Ag/AgCl 
as reference electrode, were purchased from BASi® Corporate (Indiana, USA). Ag/AgCl reference electrode was stored in 3 
M KCl solution for saturation until usage. A PC-controlled device, Gamry Interface 1000, along with Echem Analyst® soft-
ware, which was used in all electrochemical experiments, was purchased from Gamry Instruments (Warminster, USA).
2.3 Construction of immunosensor
Before use, the Au electrodes were polished with alumina powder with a particle size less than 50 nm to obtain clear and 
smooth surfaces. Subsequently, Au electrodes were sonicated initially with absolute ethanol and then with deionized water 
for 10 min by using an ultrasonic bath to remove alumina particles and some probable chemical impurities. They were 
then dried with a pure argon gas stream. After the cleaning procedure, the bare electrode surfaces were examined by utiliz-
ing EIS spectra and Rct values.

The immobilization method based on SAM of 4-mercaptophenylacetic acid was modified from Yağar et al. [51] and 
used for rapid and functional immobilization of anti-TSH antibody. Clean Au electrode was incubated in 4-MPA solution 
(10.0 mM, in absolute ethanol) for 16 h to constitute self-assembled monolayers onto the electrode surface. After this pe-
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riod, to remove unassembled 4-MPA molecules, the modified gold electrode was rinsed with ethanol and deionized water, 
then dried with a pure argon gas stream. Afterward, EDC and NHS reagents were employed for the functionalization of 
carboxyl groups on the modified electrode surface. For this purpose, a 10 µL aliquot of the EDC (0.2 M in PBS) – NHS 
(0.05 M in PBS) mixture was dripped onto the modified electrode, and then the electrode was incubated for 60 min in 
dark-moisture ambient. After rinsing with deionized water and drying process with pure argon gas of functionalized elec-
trode, a 5 µL aliquot of anti-TSH (10 µg/mL) was applied onto the electrode surface and then incubated for 60 min in a 
moisture medium. After that, a 5 µL aliquot of BSA (0.1%) was dropped onto the antibody-modified electrode to cover up 
unbinding functional groups. Finally, to remove physically adsorbed proteins, the immunosensor was rinsed with deion-
ized water and then gently dried with pure argon gas stream. Each step of immobilization is schematically represented in 
Figure 1.

Bare electrode and modified electrodes after each immobilization step are denoted in figures and tables as Bare Au, Au-
MPA, Au-MPA-EDCNHS, Au-MPA-EDCNHS-ANTITSH, and Au-MPA-EDCNHS-ANTITSH-BSA, respectively. 
2.4. Principles of measurements 
Electrochemical impedance spectroscopy (EIS) was employed to determine TSH quantitatively and optimize and charac-
terize modifications of electrode surface for each immobilization step. The solution of 5 mM Fe(CN)6

4−and 5 mM Fe(CN)6
3−, 

prepared in 50 mM PBS at pH:7.0 containing 0.1M KCl was served as a redox probe. For EIS studies, an alternating wave 
of 10 mV amplitude was applied to the electrode over the formal potential of the redox couple (0 V). Impedance spectra 
were collected in the frequency range between 10 and 50,000 Hz. 

The impedance signal is presented as a calculated function of the real and imaginary constituents (Zreal and Zim) in 
a Nyquist plot, which is shown in Figure 2. The linear part at lower frequencies corresponds to Warburg impedance, and 

Figure 1. Immobilization steps of TSH immunosensors.
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the semicircle diameter at higher frequencies corresponds to the charge-transfer resistance (Rct), which can also be seen 
in Figure 2. To calculate Rct, Warburg elements and capacitance measurements were fitted on the software by using an 
equivalent circuit model. The equivalent circuit model in the present study also shown in Figure 2, named as Randles cir-
cuit, consists of an ohmic resistance (Rs) representing the resistance of the electrolyte solution, a double-layer capacitance 
related to the capacitive properties of the complex bioactive layer, a charge transfer resistance (Rct) along with a Warburg 
impedance (Zw), representing the diffusion of molecules to the electrode surface through the complex layer.

The data of EIS measurements were fitted with an equivalent circuit model, and then the calculated Rct values were 
collected easily by utilizing commercial software called Echem Analyst® software. By using this software and equivalent 
circuit model, capacitance values could be determined by calculating the function between Rct and Warburg elements 
consisting of Y0 and alpha values.

After each immunosensor construction, 5 µL aliquots of a standard TSH solution (0.7 mIU/L in ultrapure water) were 
dropped onto the modified electrode surface. Then the immunosensors were allowed to incubate in the same conditions 
for 60 min for each addition of standard TSH solution. After each incubation period, the immunosensors were rinsed 
with UPW to remove unbound TSH molecules from the immunosensor surface. Lastly, the immunosensors were placed 
into the electrochemical cell containing the redox probe solution. The electrochemical measurements were carried out as 
previously described above. The differences in charge transfer resistance values (ΔRct) between immunosensors unbound-
bound TSH for each concentration were calculated for the preparation of TSH calibration curves.

LSV and CV were also utilized to detect TSH, for comparison of characteristics of calibration curves. LSV experi-
ments in the same redox probe were carried out under the following conditions: potential range: –0.1 to 0.5 V, step size: 
1.0 mV, scan rate: 50 mV/s. CV experiments with 3 cycles in the same redox probe were carried out under the following 
conditions: potential range: –0.1 to 0.5 V, step size: 1.0 mV, scan rate: 100 mV/s. Peak currents of the redox probe at the 
potential around 0.3 V calculated by Echem Analyst® software were monitored and recorded for each method. Calibration 
curves were plotted by using differences of current values (ΔI) between baseline and TSH applied immunosensor for each 
concentration.

3. Results and discussion
3.1. Immobilization of anti-TSH onto Au electrode
All modifications of Au electrode surface, including the formation of 4-MPA self-assembled monolayers, functionaliza-
tion of carboxyl groups via EDC/NHS reagents, and binding of anti-TSH antibody and BSA, were characterized using EIS. 
Nyquist plots of each immobilization step are shown in Figure 2. Rct values calculated by using these Nyquist plots for each 
step of the anti-TSH immobilization are given in Table 1.

It is clearly seen in Figure 3 and Table 1 that the bare Au electrode showed a tiny semicircle diameter and Rct value, 
indicating a rapid transition of the redox probe to the surface. Furthermore, the increase of Warburg impedance indicat-

Figure 2. Randles equivalent circuit model for calculating Rct and capacitance. 
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ing the diffusion of the redox probe through the electrode surface can be noticed for the bare electrode. The formation of 
4-MPA monolayers on the electrode surface created a strict barrier to electron transfer that was revealed by neutral nega-
tive ends of the 4-MPA. Therefore, after modification with 4-MPA, the diameter of the semicircle portion and Rct values, 
as shown in Figure 3 and Table 1, increased dramatically. EIS responses for 4-MPA were similar to biosensors containing 
SAM of the other mercapto acids [52–54]. After the functionalization of carboxyl groups via the EDC/NHS reagents, an 
active ester as an intermediate occurred on the surface. Since it facilitates the diffusion of the redox probe to the surface, 
a dramatic decrease in Rct values was observed in Table 1. This is because of the generation of active ester as an interme-
diate, which could facilitate the diffusion of the redox probe to the surface. Additionally, this significant decrease shows 
that carboxyl groups of 4-MPA were successfully activated by EDC/NHS. EIS responses for EDC/NHS had similarities 
with previous studies in the literature [51,55–57]. Immobilization of anti-TSH antibody onto the functionalized electrode 
caused an increase in Rct values, as it might presumably block the transportation of the redox probe to the surface. Simi-
larly, blocking of active ester intermediates via BSA increased charge resistance of the electrode surface.

Table 1. Rct values of each immobilization step.

Electrode Rct value (ohms)
Bare Au 14.14
Au-4MPA 5490
Au-MPA-EDC/NHS 33.96
Au-MPA-EDC/NHS-ANTITSH 62.48
Au-MPA-EDC/NHS-ANTITSH-BSA 144.8

Figure 3. Nyquist diagrams of each immobilization step.
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3.2. Optimization of immunosensor 
Optimization experiments of the immobilization steps had great importance in evaluating effective detection characteris-
tics for the immunosensor constructed. For this purpose, parameters including the concentration of 4-MPA, the concen-
tration of anti-TSH antibody, and the duration of anti-TSH antibody incubation were optimized. Since functionalization 
of carboxyl groups via EDC/NHS with similar concentrations were studied and optimized before [51,57–59], optimization 
of the EDC/NHS concentration was not carried out. Moreover, optimum BSA concentration and duration of incubation 
were determined according to our previous work [57] and studies in the literature [60–63].

The concentration of 4-MPA directly affected the detection ability of the immunosensor by changing the surface den-
sity of the gold electrode during the immobilization process. For the determination of optimum 4-MPA concentration, 
three immunosensors were fabricated by using 2.5 mM, 5 mM, and 10 mM 4-MPA solutions at the beginning of the im-
mobilization process. The concentrations of all other chemicals used for the construction of immunosensor were kept 
constant. Calibration curves for each 4-MPA concentration, plotted between Rct values and TSH concentrations, are 
shown in Figure 4. 

It is obviously seen in Figure 4 that the increase in the 4-MPA concentration indirectly resulted in a gradual increase 
in signal rates of immunosensors. Enrichment of the amount of 4-MPA onto electrode surface elevates functionalization 
yield of EDC/NHS, which promotes anti-TSH antibodies for immobilization. Thus, the capability of TSH binding of im-
munosensor was increased dramatically. Therefore, the highest signal obtained immunosensor, which was constructed by 
using 10 mM 4-MPA, was selected as optimum for TSH detection. Furthermore, the coefficient of determination denoted 
as R2 of the proposed immunosensor, which shows the linearity of curves, was also the highest value. Moreover, the trend 
of decreasing sensitivity to TSH seen on graphics with decreasing 4-MPA concentration was inevitable. To determine the 
effects of anti-TSH amount binding to electrode surface on immunosensor response, both anti-TSH antibody concentra-
tion and duration of incubation of anti-TSH antibody were optimized. Firstly, to determine the optimum anti-TSH anti-
body, three immunosensors were fabricated by using different concentrations of anti-TSH, including 5µg/mL, 10µg/mL, 
and 20 µg/mL. Calibration curves for each immunosensor plotted between Rct values and TSH concentrations are shown 
in Figure 5.

The sensitivity of an immunosensor depended on the amount of antibody; however, enhancing antibody amount on 
immunosensor surface does not always increase signal level and improve linearity. Due to orientation and positioning 
problems of antibody, blocking of electron transfer to the surface along with collapses and deformations on electroactive 

y = 59.279x + 2.325
R² = 0.9955

y = 96.843x - 34.725
R² = 0.9925

y = 104.09x - 20.55
R² = 0.9976

0

100

200

300

400

0 0.5 1 1.5 2 2.5 3 3.5 4

∆R
ct

 (o
hm

)

TSH (mIU/L)

2.5 mM MPA

5 mM MPA

10 mM MPA

Figure 4. Calibration curves of immunosensor fabricated by using different 4-MPA concentrations [-♦-♦-(green): 2.5 mM 4-MPA, -■-■-
(blue): 5.0 mM 4-MPA, -▲-▲-(red): 10 mM 4-MPA)].



ASAV / Turk J Chem

825

layer caused by the mass of antibodies, there is a saturation limit of immunosensor surface for each antibody. Hence, im-
munosensor constructed by using 20 µg/mL anti-TSH antibody had the worst results for both Rct values and linearity. 
As it can be clearly seen in Figure 5, although R2 values of immunosensors constructed by using 20 µg/mL and 10 µg/mL 
anti-TSH antibodies were similar, there was a significant difference between their signal levels. Thus, the optimum concen-
tration of anti-TSH antibody was determined as 10 µg/mL for TSH immunosensor. Finally, functionalized electrodes were 
allowed incubation for three different periods, including 30 min, 60 min, and 90 min at the same anti-TSH concentration, 
to detect the optimum duration of antibody. Calibration curves for each period, plotted between Rct values and TSH con-
centrations, are shown in Figure 6.
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As it can be easily seen in Figure 6, biosensor responses were significantly increased with the anti-TSH incubation pe-
riod up to 60 min. Incubation periods shorter than 60 min as similar to the low concentration of anti-TSH antibody could 
not be sufficient for immobilization of anti-TSH onto the electrode surface. Therefore, it can be noticed that the binding 
of anti-TSH to the functionalized electrode surface could occur depending on the duration of incubation. Even though 
similar curves were obtained for incubation periods of 90 min and 60 min, there was a slight difference in R2 values repre-
senting accuracy. Additionally, a longer incubation time might cause possible biochemical interactions and deformations 
of the active layer that revealed a decrease in the stability and specificity of TSH immunosensor. Therefore, the optimum 
incubation period of anti-TSH antibody was determined as 60 min for TSH immunosensor construction. 
3.3. Analytical characteristics of TSH immunosensor
3.3.1. Detection range of TSH immunosensor
The analytical characteristics of the proposed immunosensor, including detection range, LOD values along with repeat-
ability and reproducibility, were evaluated for TSH. 

The detection range of TSH immunosensor was determined by using four different methods including EIS, LSV, CV, 
and capacitance. Electrode denoted Au-MPA-EDCNHS-ANTITSH-BSA was remarked baseline for all measurements, 
and calibration curves were plotted by calculating the difference in signals between baseline and TSH addition. These dif-
ferences of signals calculated by utilizing Gamry Echem Analyst Software were remarked as ΔRct for impedance, ΔC for 
capacitance, and ΔI for CV and LSV on graphs.

EIS responses of immunosensor obtained for different concentrations of TSH including 0.7, 1.4, 2.1, 2.8, and 3.5 mIU/L 
are shown in Figure 7. It is clearly seen in results that expanding semicircles of Nyquist plots regularly by addition of TSH 
resulted in a significant increase in Rct values. These characteristic Nyquist plots were similar to other EIS-based im-
munosensors [3,63,64], which were designed for the detection of protein-based analytes. By using Rct values calculated 
from these Nyquist plots, the calibration curve shown in Figure 8 was plotted for TSH at a concentration range of 0.7–3.5 
mIU/L.

Additionally, another calibration curve for TSH, which is shown in Figure 9, was also prepared by using capacitance 
differences correlated with increasing TSH concentrations. Capacitance values were calculated for each concentration of 

Figure 7. Impedance spectra obtained for different TSH concentrations.
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TSH by using Rct, alpha, and Yo values of Nyquist plots are shown in Figure 7. Similarly, calculated capacitance values were 
used as a quantification method in a study by Limbut et al. [65] and our previous work [66]. 

Immunosensor responses based on CV and LSV methods for TSH, including 0.7, 1.4, 2.1, and 2.8 mIU/L, are shown 
in Figure 10. As it is clearly seen in the results, the peak levels of both methods were in a tendency of prominent decrease 
against baseline by increasing concentrations of TSH. These results obtained for CV and LSV were similar to those of other 
immunosensors, which utilized CV or LSV as a quantification method to determine an analyte [67–71]. For each method, 
a calibration curve shown in Figure 11 at a linear range between 0.7 and 2.8 mIU/L was plotted by using peak currents 
generated automatically by EChem Analyst software. 
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Figure 11. Calibration curves obtained by using LSV and CV responses of TSH immunosensor.

Figure 10. LSV (A) and CV (B) responses of TSH immunosensor
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For each method, the limit of detection (LOD) representing the lowest detected quantity of TSH immunosensor was 
determined via the equation of 3.3Sd/m. Sd and m, which represent the standard deviation of the intercepts and slope 
of the calibration curve, respectively, were calculated by using the regression module of Microsoft Excel® software. LOD 
values obtained from data of calibration curve for LSV, CV, capacitance, and EIS were determined as 0.090 mIU/L, 0.134 
mIU/L, 0.150 mIU/L, and 0.034 mIU/L, respectively. Since there was no study in the literature that utilized neither the LSV 
method nor the CV method for TSH determination, a comparison could not be made in terms of analytical parameters 
such as LOD, linearity, and linear range.

The present TSH immunosensor was compared to the other methods for TSH detection in such parameters including 
linear range, LOD, and linearity in Table 2.

As it is obviously seen in Table 2, although all of the other methods [33,45,48,50,72–74] could detect TSH with a wide 
range, our nonlabeled TSH immunosensor showed better linearity than all of them. Moreover, in higher concentrations of 
TSH, the sample can easily be diluted and applied to the proposed TSH immunosensor. Additionally, methods obtaining 
LOD levels as low as the present biosensor had an expensive and complicated construction process as well as worse linear-
ity. Since both linearity and LOD values are crucial parameters for precise and sensitive detection of an analyte, our present 
work is a successful example of an accurate immunosensor, which had a simple, cheap, and nonlabeled fabrication process. 

As clearly seen in the results, the detection range of the designed TSH immunosensor had good linearity along with de-
cent LOD values for each method. Since EIS had better values for both of these parameters, it had been used only to deter-
mine characterization of other parameters such as reproducibility, repeatability, and performance on the artificial serum. 
3.3.2. Reproducibility and repeatability 
Reproducibility representing the accuracy of the measurement method based on electrochemical immunosensors is one of 
the considerable parameters for biosensor construction. It means that the reproducibility expresses the difference between 
the two results of immunosensors, which are constructed by using the same parameters. For revealing reproducibility, ten 
TSH immunosensors were constructed under the same optimum conditions and calibration curves were obtained by us-
ing Rct values and TSH at concentration range of 0.7–3.5 mIU/L for each of these immunosensors. R2 values representing 
linearity and linear equations are given in Table 3.

Repeatability experiments were carried out to determine the average value, standard deviation, and coefficient of varia-
tion for TSH concentration at 0.7, 2.1, and 3.5 mIU/L. For this purpose, Rct values of immunosensors were recorded when 
the biosensor was consecutively exposed to aliquots of each 0.7, 2.1, and 3.5 mIU/L standard solutions on five occasions. 
The results for each level are shown in Table 4.

As it is obviously seen in Tables 3 and 4, our simply constructed and nonlabeled immunosensor had better repeatability 
and reproducibility than much of the other TSH immunosensors in the literature [33,35,45,49,50,75]. Additionally, the 
proximity of slope of curves, goodness of linearity along with lower standard deviation, and coefficient of variation have 
significant importance in developing an accurate immunosensor. 

Table 2. Comparison of present immunosensor to earlier TSH biosensors

Method Principle of measurements Detection range  (mIU/L) Linearity (R2) LOD (mIU/L) Ref.
PMMA nanobead labeled 
immunosensor Fluorescence 0.05–100 0.9982 0.4 [50]

Immunosensor based on an 
azo compound EIS 0.2–20.0 0.9960 0.04 [33]

Gold nanoparticle-based 
biosensor Surface plasmon resonance 0.4–12.5 0.99 1.71 [72]

Lateral flow immunoassay Raman spectroscopy 0–30 0.9946 0.025 [45]

Point of care device Chemiluminescance 1.9–55 0.9942 1.9 [74]

Copolymer-based 
immunosensor Potentiometry 1.45–17.5 N/A 1.4 [48]

ELISA membrane-based 
immunoassay

Differential pulse 
voltammetry 0.3–19.2 0.98 0.21 [73]

Nonlabeled immunosensor EIS 0.7–3.5 0.9997 0.034 Present work



ASAV / Turk J Chem

830

3.3.3. Application to artificial serum samples
Finally, TSH concentrations spiked in the artificial serum samples were determined by the immunosensor. The results 
presented in Table 5 show that the developed non-labeled immunosensor could precisely and accurately detect TSH in the 
artificial serum samples. Furthermore, these results also demonstrate that the proposed immunosensor was not affected 
by the interference of salts, urea, glucose and BSA.

As shown in Table 5, our simply-fabricated TSH immunosensor showed similar performance in the artificial serum by 
the means of recovery rate and relative difference, compared to the previous biosensors in literature [3,55,76,77].

4. Conclusion
In this study, a sensitive, rapid, and accurate determination of TSH is accomplished by using a nonlabeled, low-cost, and 
simple-fabricated immunosensor. The proposed immunosensor shows good linearity in calibration curves, which is plot-
ted by using values of four different electrochemical methods including EIS, LSV, CV, and capacitance for detection of 
TSH at a concentration range of 0.7–3.5 mIU/L. These methods are compared to each other in terms of linearity, detection 
range, and sensitivity. The proposed immunosensor has notable results in experiments of analytical parameters such as 
reproducibility and repeatability with low standard deviation and coefficient of variation along with LOD value as 0.034 
mIU/L. Moreover, the constructed biosensor is also compared with some other TSH detection methods. As a result, the 
present immunosensor can be a cheap, accurate, sensitive, and easily constructed alternative to these methods. Further-

Table 3. Reproducibility of TSH immunosensor.

Immunosensor Linear equation (y=mx+n) Linearity (R2) Linear range (mIU/L)
1 y = 58.629x + 9.96 0.9995 0.7–3.5
2 y = 62.329x + 0.29 0.9948 0.7–3.5
3 y = 60.943x – 17.9 0.9959 0.7–3.5
4 y = 63.557x – 8.35 0.9948 0.7–3.5
5 y = 67.257x + 31.3 0.9919 0.7–3.5
6 y = 64.007x – 5.52 0.9997 0.7–3.5
7 y = 64.729x + 12.87 0.9996 0.7–3.5
8 y= 56.671x + 19.27 0.9956 0.7–3.5
9 y = 63.629x + 11.74 0.9948 0.7–3.5
10 y = 59.829x – 9.58 0.9908 0.7–3.5

Table 4. Repeatability of TSH immunosensor 

TSH concentration
(mIU/L)

Average value (mIU/L)
(n = 5)

Standard deviation 
(±) (mIU/L)
(n = 5)

Coefficient of variation (%)
(n = 5)

0.7 0.69 0.017 2.47
2.1 2.11 0.048 2.27
3.5 3.47 0.057 1.98

Table 5. TSH detection in artificial serum samples.

Added TSH 
(mIU/L)

Detected by immunosensor 
(mIU/L)

Recovery rate
 (%)

Relative difference
(%)

1 0.966 96.61 3.39
1.5 1.468 97.90 2.10
2.5 2.541 101.64 1.64
3 3.095 103.18 3.18
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more, the proposed immunosensor does not consist of any heavy instruments, labeling process, and time-consuming 
pretreatment as in traditional methods for determination of TSH. Finally, detection of TSH spiked in the artificial serum 
is carried out successfully, and the results show that the fabricated immunosensor is a promising example for detection of 
TSH in serum samples. 
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