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Abstract: We present an algorithm for interpolating an unknown univariate polynomial f that has a t sparse
representation ( t << deg(f)) using Bernstein polynomials as term basis from 2t evaluations. Our method is based
on manipulating given black box polynomial for f so that we can make use of Prony’s algorithm.
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1. Introduction
Univariate polynomial interpolation is the process of reconstructing an unknown polynomial f from some set
of its evaluations. Let {Pi(x)}i=1,2,3,... be a vector space basis for the univariate polynomials K[x] where K is
a field. Any polynomial f ∈ K[x] can be represented as a linear combination of t basis elements,

f(x) =

t∑
j=1

cjPδj (x) where cj ̸= 0, 0 ≤ δ1 < δ2 < · · · < δt.

Here t << deg(f) is the sparsity of f with respect to the basis {Pi(x)}i=1,2,3,.... Sparse interpolation algorithms
reconstruct the term coefficients cj and the term degrees δj from values ai = f(ωi), at x = ωi ∈ K. Current
algorithms use i = 1, . . . , 2t evaluations with a known sparsity t (if t is unknown, current algorithms use
i = 1, . . . , t+B evaluations where B is an upper bound for t, i.e. B ≥ t).

A sparse interpolation algorithm is given by Prony [1]. Ben-Or and Tiwari [2] adapted Prony’s algorithm
to computer algebra and they gave an interpolation algorithm using standard power basis {Pi(x) = xi}i=1,2,....

That algorithm interpolates a polynomial with coefficients in Z, Q, R, or C, and can be adapted to finite
fields. More details about Prony’s algorithm can be found at [2–5] and references therein. Within the last
years, different algorithms for interpolating a sparse polynomial using term basis different than power basis are
designed: [6] uses Pochhammer polynomials and Chebyshev polynomials of the first kind; [7] uses Legendre
polynomials; [8] and [9] use Chebyshev polynomials of the second first kind and second kind, respectively, as
term basis. Algorithms in [10] perform sparse interpolation using all four kinds of Chebyshev polynomials as
term basis.

Bernstein polynomials of degree n form a basis, which is also called Bernstein-Bézier basis, for the vector
space of polynomials of degree ≤ n. Bernstein–Bézier basis is the standard way in computer-aided geometric
∗Correspondence: eimamoglu@klu.edu.tr, ei11b@my.fsu.edu
2010 AMS Mathematics Subject Classification: 68W30.

This work is licensed under a Creative Commons Attribution 4.0 International License.
2103

https://orcid.org/0000-0003-2137-9921


İMAMOĞLU/Turk J Math

design for representing a polynomial curve. In the present paper, we examine the problem of interpolating a
degree n sparse polynomial f using Bernstein polynomials as term basis, i.e. {Pi(x) = Bi,n(x)}i=1,2,...,n. We
want to compute cj and δj such that

f(x) =

t∑
j=1

cjBδj ,n(x) where cj ̸= 0, 0 ≤ δ1 < δ2 < · · · < δt ≤ n.

from given a black box for f, sparsity t and n = deg(f) by using 2t evaluations of the black box.
We start with defining a black box for an unknown polynomial and Bernstein polynomials. We state the

problem at the end of this section. We give our result and state our algorithm in the next section.

Definition 1.1 A black box for an unknown polynomial f ∈ K[x] is an object which takes ω for x and produces
a = f(ω) :

ω → ■ → a = f(ω).

See [11] for more details.

We assume a black box for f always returns correct evaluation without any error. If a black box for f

is given, we can compute evaluations of f using the given its black box.

Definition 1.2 We define i-th Bernstein polynomial of degree d as

Bi,d(x) =

(
d

i

)
xi(1− x)d−i

where
(
d
i

)
is a binomial coefficient. More properties and details of Bernstein polynomials can be found in

[12, 13].

If Πd is the vector space of polynomials of degree ≤ d with real coefficients, then the set of all Bernstein
polynomials of degree d, {Bi,d(x)}i=0,1,...,d, form a basis (Bernstein-Bézier basis) for the vector space Πd. That
means a polynomial f of degree n ≤ d can be represented by a linear combination of t Bernstein polynomials of
degree n , i.e. f(x) =

∑t
j=1 cjBδj ,n(x) where cj ̸= 0, 0 ≤ δ1 < δ2 < · · · < δt ≤ n = deg(f). This representation

is useful when t << deg(f).
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Example 1.3 The degree 37 polynomial

f(x) = −24937107930x37 + 598488958620x36 − 6882595285230x35

+ 50472060297120x34 − 264975875536680x33 + 1059888367802880x32

− 3356237492989920x31 + 8630011484851680x30 − 18337677165381420x29

+ 32597023240892880x28 − 48886976389897800x27 + 62200337061139200x26

− 67344796339984800x25 + 62095600522519200x24 − 48681243903322800x23

+ 32302743492096000x22 − 17981019326655000x21 + 8250114749877000x20

− 2996836554442500x19 + 757095550596000x18 − 37854777529800x17

− 100946073412800x16 + 82592241883200x15 − 46084076992800x14

+ 21371241332700x13 − 8558471441520x12 + 2962547806680x11

− 877791942720x10 + 219447985680x9 − 45403031520x8 + 7567171920x7

− 976409280x6 + 91538370x5 − 5547780x4 + 163170x3

can be written as a sum of only t = 2 Bernstein polynomials of degree 37 :

f(x) = 21B3,37(x)− 7B13,37(x).

Here the polynomial f has sparsity t = 2 in terms of Bernstein polynomials. Note that 2 = t << deg(f) = 37.

We can interpolate f in Bernstein polynomials from 2t evaluations of its black box.

Problem 1.4 From given a black box for a polynomial f ∈ Πd (f is unknown), n = deg(f), and sparsity t,

using 2t evaluations of the black box, compute the cj and the δj such that

f(x) =

t∑
j=1

cjBδj ,n(x) where cj ̸= 0, 0 ≤ δ1 < δ2 < · · · < δt ≤ n.

2. Results and algorithm

Bernstein polynomial Bi,d(x) satisfies the reduction formula

(1 + x)dBi,d

( x

1 + x

)
=

(
d

i

)
xi.

We reduce the sparse polynomial interpolation problem in Bernstein polynomials to interpolation problem in
the standard basis, so we can make use of Prony’s algorithm [1–5]. We perform change of variables x → z

1+z
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on f and use the multiplier (1 + z)n to define g :

g(z) := (1 + z)nf
( z

1 + z

)
= (1 + z)n

t∑
j=1

cjBδj ,n

( z

1 + z

)

=

t∑
j=1

cj(1 + z)nBδj ,n

( z

1 + z

)

=

t∑
j=1

cj

(
n

δj

)
zδj

=

t∑
j=1

Cjz
δj where Cj = cj

(
n

δj

)
.

The resulting polynomial g(z) =
∑t

j=1 Cjz
δj has the sparsity t in the standard power basis {zi}i=0,1,2,... (if f

is a sum of t Bernstein polynomials of degree n, then g has t terms). The polynomial g can be interpolated
by using Prony’s algorithm [1–5] which uses 2t evaluations of the black box for g. Since g and f are related,
we can use the black box for f to get evaluations of g.

Example 2.1 Consider the degree n = 37 polynomial f in Example 1.3:

f(x) = 21B3,37(x)− 7B13,37(x) =

2∑
j=1

cjBδj ,37(x).

The polynomial f corresponds to

g(z) := (1 + z)37f
( z

1 + z

)
= 163170z3 − 24937271100z13 =

2∑
j=1

Cjz
δj .

Here δ1 = 3, δ2 = 13 and c1 = 21, c2 = −7, C1 = 161370, C2 = −24937271100. Here we can see that f is a sum
of t = 2 Bernstein polynomials and g has only t = 2 terms. Prony’s algorithm [1–5] interpolates g in standard
basis from 2t evaluations. Hence, we can interpolate f in Bernstein polynomials from 2t evaluations.

We state our algorithm as follows:

2.1. Algorithm: interpolation with Bernstein polynomials as term basis

• Input: A black box for f, degree n of f and the sparsity t.

• Output: The δj and the cj such that f(x) =
∑t

j=1 cjBδj ,n(x).

1. Define g(z) := (1 + z)nf( z
1+z ) =

∑t
j=1 Cjz

δj where Cj = cj
(
n
δj

)
.

2. Use Prony’s algorithm [1–5] to compute the δj and the Cj such that g(z) =
∑t

j=1 Cjz
δj (Prony’s

algorithm reconstructs cj , δj from 2t evaluations of the black box).
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3. Compute cj from the equality Cj = cj
(
n
δj

)
.

4. Return the δj and the cj .

Remark 2.2 If t is unknown and a bound B ≥ t is given on input, one can compute t from t+B evaluations
of the black box. One can also compute t from 2t+2 evaluations by using early termination algorithm introduced
in [14].
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