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Abstract
Safety-critical systems are widely used in many sectors to prevent fatal accidents and prevent loss of life, damage of prop-
erty, or deterioration of the environment. Implementation of software safety standards as part of the development of
safety-critical software is generally considered an essential element of any safety program. Therefore, it has become
more critical to produce highly reliable software to meet the safety requirements established by functional safety stan-
dards, such as IEC 61508, ISO 26262, and EN 50128. IEC 61508 supports well-known safety mechanisms such as design
diversity like N-version (multi-version) programming. N-version (multi-version) programming is a method where multi-
ple functionally equivalent programs are independently developed from the same software specifications. N-version
(multi-version) programming is particularly an effective approach to increase the quality of software in a safety-critical
system. In this paper, one of the well-known and widely used algorithms in the field of N-version (multi-version) pro-
gramming, the majority voting algorithm, has been modified with an online stability checker where the decisions of the
voter are judged against the stability of the underlying system. The plant where all the theoretical results are implemen-
ted is a tilt-rotor system with the proposed N-version (multi-version) programming–based controller. The experimental
results show that the modified majority voter-based N-version (multi-version) programming controller provides more
reliable control of the plant.
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Introduction

Design of safety-critical systems is of particular impor-
tance in processes which might cause loss of life, inju-
ries, or environmental damage. The software which is
used in sectors such as aviation, railway, nuclear, and
machine automation also must be safety-critical.
Industry-specific safety standards that reside with IEC-
61508 (The International Electrotechnical Commission)
umbrella standard direct how safety-critical processes
should be managed. N-version (multi-version) pro-
gramming (NVP) that uses multiple different versions
of the same software to satisfy the need for variation in
software design is one of the methods recommended in
these standards.

In the literature, the successful applications of the
NVP technique include space,1,2 railway signaling sys-
tems,3 message transmission systems,4 e-voting,5 plagi-
arism detection algorithms,6 and network services.7,8 In
addition, the software requirements in the N-version

programming technique are described in the litera-
ture.9–12 These studies have shed light on the results
that the software to be developed should work in differ-
ent software development environments by using differ-
ent software languages by different working groups.
The NVP method suggests that errors in functionally
equivalent modules can occur at various points, so
errors can be detected and actual results can be
obtained.13
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The most significant benefit of this approach is to
maintain software error tolerance.14 In the event of any
version failure, the remaining active versions will gener-
ate the desired output, and the system will keep run-
ning. In this respect, the regular operation of the
system, generated during the software development and
testing, is insured against unpredictable errors.15,16 The
use of the NVP method, along with the available test
methods and program accuracy, guarantees a high level
of software reliability.17,18

The commonly used algorithms for voting differ in
the requirements management of the original data and
voting schemes.19–24 Some of the algorithms depending
on the version given by the data set may be ineffective.
The voting algorithms are mainly classified into two
categories: voting algorithms established by the output
data comparison and voting algorithms where the deci-
sion making does not rely on the likeness of the output.
Voting algorithms that are based on output data com-
parison are divided further into two categories, such as
formalized and non-formalized algorithms. Note that,
when the outputs of multiple versions are compared,
the approach of equivalent outputs is used. Thus, for
example, if two outputs are in the neighborhood of a
fixed number called the tolerance value, the outputs are
said to be equivalent. As a rule, the equivalent output is
considered as the correct output. Here, selecting the
correct output set for the versions is done using subsets
of the approved versions or using the so-called agree-
ment matrix. The classification of the voting algorithms
applied in NVP method is shown in Figure 1 and it
reveals that these algorithms depend on the decision-
making principle, classification of the output data, and
individual classification characteristics of the output
data.25 A list that suits this classification is given below:

1. Absolute majority voting (MV) algorithm
(N-version programming with majority voting;
NVP-MV);

2. Consensus voting (CV) algorithm (NVP with
consensus voting, NVP-CV);

3. Fuzzy MV;
4. Fuzzy CV;
5. Absolute MV algorithm with minimization

(minMV);
6. CV algorithm with minimization (minCV);
7. Formalized MV (FMV);
8. Formalized CV (FCV);
9. Maximum likelihood voting;
10. Averaged voting.

This study explains how to use NVP in a new way.
With NVP, several versions of the same controller will
be used for the next action. However, the majority voter
can vote to put the system in an unstable configuration
(e.g. it could cause an unmanned aerial vehicle (UAV)
crash). This study allows the NVP framework to select
the input from the minority, which will still result in a
stable system, by combining the NVP with an instability
detector that marks such inputs as invalid.

NVP-MV algorithm is explained in detail. For a
real-time experiment, a tilt-rotor stabilization platform
is built, and here, the mathematical model of the sys-
tem is given. The system has 3 degrees of freedom.
Therefore, it can freely move around the roll, pitch,
and yaw axes. The platform has proportional–integral–
derivative (PID) controllers for each rotation axes.
Without loss of generality, the NVP-MV structure is
implemented on only roll and pitch controllers.
Furthermore, the NVP-MV algorithm is modified by
adding a stability checking feature to the system.
Experimental results and concluding remarks are dis-
cussed at the end of the paper.

N-version programming

The voting algorithms presented in NVP problems are
different in dependency on the initial data and the work
program. It is crucial to select the most appropriate
voting algorithm for a data set. However, the imple-
mentation of such algorithms, which require the divi-
sion of data into subsets of items, is equivalent to each
other.1,9,26

In the NVP technique, the architecture consists of N
program versions Vj that are independently designed as
given in:

V1,V2, . . . ,VdN=2e+1, . . . ,VN�1,VN

� �
ð1Þ

The output of the NVP algorithm is considered to be
reliable if at least (dN=2e1) versions agree on the same
output.27 This is demonstrated in Figure 2.

The agreement matrix for NVP-MV

The most critical point in choosing the right set of out-
put is based on the creation and analysis of the so-called
agreement matrix R. It is an N3N Boolean matrix

Figure 1. Voting algorithms in NVP.
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where N is the number of versions, and it reflects the
equivalence among outputs. The elements of R are
determined as follows

rij =
1, jxi � xjj4e
0, jxi � xjj. e

�
ð2Þ

where i and j indicate the rows and columns of R,
respectively, xi and xj denote the outputs of versions,
and e is the tolerance threshold.

The following additional terms apply to the agree-
ment matrix R. Equivalence relation on R shall be pro-
vided, including reflection (equation (3)), symmetry
(equation (4)), and transition (equation (5)) properties

rii =1, 8i ð3Þ
rij = rji, 8i 6¼ j ð4Þ

if rik =1and rkj =1 then rij =1, 8i, j ð5Þ

The purpose of the Boolean compositions on R is to
convert it into a suitable form in which the equivalence
relationship holds. Overall, studies of the composition
for Boolean matrices are defined as follows.

Given two matrices A and B; where their entries take
values 0 or 1, then the Boolean composition of matrices
A and B is as follows

C=A8B, where cij = �
N

k=1
aik � bkj
� �

ð6Þ

where � and � represent the Boolean OR and AND
operations, respectively. For the fulfillment of the
equivalence relationship (3)–(5) on the agreement
matrix R, the application of the Boolean compositions
of R should be carried out in conjunction with the fol-
lowing principle

E=R1 [ R2 [ . . . [ RQ, 14Q4N� 1 ð7Þ

where Q is the number of results of Boolean composi-
tion and N is the number of versions. Thus, if the result
is not satisfactory, then using

E2 =R [ R8R ð8Þ

the Boolean combination can be rearranged. If the
result of equation (8) is still not satisfactory, then the
following Boolean combination can be used

E3 =R [ R8R [ R8R8R=E2 [ R3 ð9Þ

The NVP-MV algorithm

Assume that each one of N versions is independent and
the output values generated by each version are speci-
fied by x1, x2, . . . , xN. After choosing the tolerance
value e, the steps of the algorithm are applied:

Step 1. Build the agreement matrix R using equation (2).
Step 2. Analyze the equivalence relation on R under
the conditions (3)–(5). If it holds, go to Step 4, else, go
to Step 3.
Step 3.Equation (7) is carried out until the equivalence
ratio (3)–(5) for R does not hold.
Step 4. The correct output set shall be defined. In each
row of R, the number of elements is determined. Yi

shows the number of elements in row i. If there is such
row i with

Yi5
N+1

2

� �
ð10Þ

then the list of correct results is created from the corre-
sponding units in row i. Here, d:e in equation (10)
denotes the ceiling operator.

Figure 3 shows the principle how the results of the
versions are selected, with A being the set of correct
results.

The tilt-rotor system and the controller
structure

The mechanical structure of the system has two main
parts. One is a fixed carrier, and the other is dual tilt-
rotor system which is mounted on the fixed carrier.
The tilt-rotor frame can be freely rotated about three
orthogonal axes according to the limitation of the

Figure 2. Basic diagram of NVP-MV.
Figure 3. Selection of correct answers from R.
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platform. Therefore, the system is 3 degrees of freedom
and movable on the roll, pitch, and yaw axes. The tilt
system contains brushless direct current (BLDC) and
servo motors as actuators.28 The servos are responsible
for yaw and pitch torques, and the BLDC motors are
used for roll control. Figure 4 shows the system under
control. The mathematical model of the system is non-
linear. In this study, a linear system approximation is
performed, which makes the controller design much
more comfortable.29 The controller is chosen to be a
PID controller. Any hardware failure of the PID con-
troller causes undesired control signals which will affect
the performance or even the stability of the plant. To
overcome this problem, an NVP-MV-based structure is
considered.

Mathematical model

In order to stabilize the system, the roll, pitch, and yaw
torques are used. For roll control of the system, the
BLDC motor speed difference is used. The servos pro-
vide pitch and yaw torques with tilting the BLDC
motors and changing the resultant thrust force. For
modeling, frames of the platform are defined as fol-
lows: the tilt-rotor part is the inertial frame, and the
fixed carrier is the body frame. Besides, equation (11)
denotes coordinate of the inertial and body frame

OI = xI, yI, zIf g
OB = xB, yB, zBf g

ð11Þ

Because of the tilt mechanism, the BLDC motors
have their own frame. The counter tilting causes yaw
torque and represents Oy1 and Oy2. The parallel tilting,
which is denoted by Op, produces pitch torque

Oy1 = xy1 , yy1 , zy1
� �

Oy2 = xy2 , yy2 , zy2
� �

Op = xp, yp, zp
� � ð12Þ

The detailed description of system axes can be seen
in Figure 5. a, b denote the counter and the parallel tilt-
ing angles, respectively.

lv, lh are the transverse and the longitudinal distances
from stabilization point, respectively. The trust forces,
produced by propellers, are represented with T1 and T2.
Note that the propellers generate the main trust force.
The parallel and counter tilting produce the pitch and
the yaw torques. The roll torque is obtained from the
trust difference of the rotors. The rotational displace-
ment is defined as j = fu,f,cg. The nonlinear rota-
tional dynamics of the system can be obtained using the
Newton–Euler method

~t = I
_~O+~O3 I~O

	 

ð13Þ

In the equation, ~t is total torque vector, I denotes
inertia matrix, and the O is angular velocity vector. The
total torque contains gyroscopic, trust, and weight
torques

~t =~tc +~tg +~tw ð14Þ

However, in order to reduce the model, the gyro-
scopic torques, which are produced by tilting, are disre-
garded. Because of rotational dynamics, the necessary
transformation matrices are defined as

RB!I =

cucc sfsucc � cfsc cfsucc + sfsc

cusc sfsusc + cfcc cfsusc � sfcc

�su sfcu cfcu

2
64

3
75

RB!I is defined for body to inertial frame transforma-
tion, and c= cos and s= sin

Figure 4. The test system.

Figure 5. Inertial and body frame of the platform.

272 Measurement and Control 54(3-4)



Ry1!B =
ca 0 sa

0 1 0
�sa 0 ca

2
4

3
5, Ry2!B =

ca 0 �sa

0 1 0
sa 0 ca

2
4

3
5

Ry1!B, Ry2!B represent the counter tilt effect of rotors.
The transformation matrix of rotors pitch change to
body frame is defined as

Rp!B =
cb 0 �sb

0 1 0
sb 0 cb

2
4

3
5

In this context, using the transformation matrices, the
force on the center of the body frame can be defined as

TB
1 =Ry1!BRp!BT1

TB
2 =Ry2!BRp!BT2

(
ð15Þ

Now, let define the actuator torque

tc = lBy13TB
1 + lBy23TB

2 ð16Þ

In the equation, lBy1, l
B
y2 represent distances from the

stabilization point: lBy1 = ½lh, � lv, 0�T, lBy2 =
½�lh, � lv, 0�T.

The weight torque is provided by the center of grav-
ity distance on the body frame and defined as

tw = lBw3RI!BmGI ð17Þ

where lBw is distance of center of gravity from stabiliza-
tion point and defined as lBw = ½0, � lv, 0�T. m is the
mass of the body frame and GI is the gravity vector
according to the inertial frame.

So, deriving equations (13), (16), and (17), nonlinear
dynamic of the system can be modeled with following
equations

Ixx€f= _u _c Iyy � Izz
� �

� T1 +T2ð Þlh
sbsa � T1 +T2ð Þlhcbca

Iyy€u= _f _c Izz � Ixxð Þ � T1 +T2ð Þlv
cacb � T1 +T2ð Þlvsbsa

+ ccculvmg

Izz€c= _u _f(Ixx � Iyy)� (T1 +T2)lv

sbca � (T1 � T2)lvsacb

+ sulvmg

ð18Þ

In order to obtain a linear model around the equili-
brium point, a linear approximation is applied to the
dynamic equations. The roll, pitch, and yaw displace-
ment, and velocities are all equal to zero. So, three sub-
systems can be defined to provide linear equations. For
roll equilibrium, we have a=b= u=c=0, and the
roll equation is simplified as

Ixx€f= _u _c Iyy � Izz
� �

� T1 � T2ð Þlh ð19Þ

where if control signal is defined as u1 = (T1 � T2) and
for small deviations of df, d _f, the linear approximation
of roll dynamic can be defined as

Ixxd€f= � u1lh ð20Þ

For the pitch dynamics, assuming a=c=f=0
for the equilibrium, the pitch equation takes following
form

Iyy€u= _f _c Izz � Ixxð Þ � T1 +T2ð Þlvcb + lvmgcu ð21Þ

Here, if the control signal is defined as
u2 = (T1 +T2)cb and for small deviation of du, d _u,
then the equation can be reduced to

Iyyd€u= � u2lv + lvmgdu ð22Þ

For the yaw dynamics, assuming b= u=f=0 for
the equilibrium, the yaw equation can be defined as

Izz€c= _u _f Ixx � Iyy
� �

� T1 +T2ð Þlvsa ð23Þ

where, if the control signal is defined as
u3 = (T1 +T2)sa and for small deviation of dc, d _c, the
equation can be reduced to

Izzd€c= � u3lv ð24Þ

Defining the states of the system

x1 = d _u x2 = d _f x3 = d _c ð25Þ

The simplified linear model of the system is as
follows

_x=Ax+Bu
y=Cx+Du

ð26Þ

_x1

_x2

_x3

2
64

3
75=

lvmg
Iyy

0 0

0 0 0

0 0 0

2
64

3
75x+

�lh
Iyy

0 0

0 �lv
Ixx

0

0 0 �lv
Izz

2
664

3
775u

y=

1 0 0

0 1 0

0 0 1

2
64

3
75x

ð27Þ

x0 = 408(Pitch8) 08(Roll8) 08(Yaw8)
� �

ð28Þ

where system parameters are shown in Table 1. The ini-
tial states are given below

The linearized model shows that the system can be
regulated using low-order controllers such as the PID

Table 1. Parameter values of the test environment.

Parameters Values

Ixx 32 3 10–3 kg m2

Iyy 102 3 10–3 kg m2

Izz 72 3 10–3 kg m2

m 134 3 10–3 kg m2

lh 30 3 10–3 kg m2

lv 90 3 10–3 kg m2

g 9.8 m/s2

Subasi et al. 273



controller. The controller transfer function is given in
equation (29)

PID=P+ I
1

s
+D

N

1+N 1
s

ð29Þ

Controller structure

This section will present a real-time controller design
procedure for a tilt-rotor UAV based on a modified
NVP-MV algorithm. Without loss of generality, we
choose the PID controller to meet satisfactory perfor-
mance and closed-loop stability. Generally, NVP-MV
algorithm is a 2 out of 3 structure, which means that, if
two versions agree, majority voter takes this decision as
the correct output. This general approach is demon-
strated in Figure 6.

In this study, we present an algorithm that makes
the voter more intelligent in the sense of detecting stabi-
lizing decisions of the controllers. In this modified voter
design, we have implemented an instability detector and
a memory which stores the previous decision. So, this
type of NVP-MV voter knows whether the decision sta-
bilizes the system or not. A basic block diagram of the
novel NVP-MV is demonstrated in Figure 7.

Instability detector needs system output value, sys-
tem states, and reference of the controlled system. The
detector output which is the input of the voter is 0
(False) when the system is stable. On the other hand,
when the system’s output diverges (unstable), the detec-
tor’s output is 1 (True).

Wang et al.30 proposed that an online Lyapunov sta-
bility analysis feature can be integrated to the architec-
ture to achieve a safety-critical controller. This idea
influenced the authors of this paper to modify the voter
with such a feature, which they call the instability
detector.

For input-to-output stability, both the storage and
supply functions have to be constructed. Figure 8 shows
the principle for L2 gain stability of tilt-rotor system
where

_V(x)� a2wTw+ yTy40 ð30Þ

holds, with w being the unit-peak uniform noise and y
being the output of the system. Here, xTPx represents
the (quadratic Lyapunov-like) storage function. The
choice of the P matrix and alpha is not straightforward

and requires some effort. In this study, the appropriate
P matrix and a value is chosen after some domain
knowledge and trial-and-error like simulations.

The proposed modified NVP-MV algorithm is
shown in Figure 9.

Experimental results

The performance of the proposed modified NVP-MV-
based PID controller has been assessed by simulations
executed on a tilt-rotor system. This section describes
the simulation scenarios and the design of high avail-
ability PID controllers. As the simulation environment,
MATLAB R2017b Simulink has been used, which is
based on real-time behavior and the mathematical
model of the system. In the simulation scenario, the sys-
tem has got three PID controllers for each two states:
roll and pitch (yaw behavior is neglected). Each PID
controller parameter is calculated using the Ziegler–
Nichols method. Recall that the simulation results are
not plotted here, because the real-time experimental
results are given at the end of this section. The simula-
tion duration is chosen to be 40 s, and every 5 s, one or
more of the PID parameters are replaced with such val-
ues that make the system unstable. The reason why 5-s
intervals are chosen is that the settling time of the sys-
tem is 3 s for stabilizing controller sets. For PID para-
meters which make the system stable, the health of PID
is defined as 1 (True). Otherwise, PID parameters lead-
ing to instability of the system are defined as 0 (False).
Table 2 and Figure 10 give information about the simu-
lation details of the scenario, where Figure 10 shows a
Markov Diagram to explain the possible states and
transitions. Here, common cause effects, the effect that

Figure 6. NVP-MV PID controlled system. Figure 7. Diagram of designed voter.

Figure 8. Instability detector.
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two or three controllers fail at the same time due to a
common cause, are neglected.

State S0 indicates that all versions stabilize the sys-
tem, and Ve123 \ e, meaning that all versions are within
e-neighborhood which is a sufficiently small number,

the instability detector’s output is False. On the other
hand, for example, state S4 (which is valid between
20th and 25th second) tells us that only Version 1 (PID
1) produces a stabilizing control, Version 2 (PID 2) and
Version 3 (PID 3) make the system unstable; however,
since they are the majority, NVP-MV chooses the out-
put of Version 2 and Version 3. Our modified NVP-
MV immediately switches to the minority’s decision,
which is Version 1. The voter changes the final decision
within the next sampling time: 0.01 s. According to the
scenario starting at 25th second and ending at 30th sec-
ond (State S5), the controller parameters of Version 1
and Version 3 do not stabilize the system while Version
2 results in a stable closed-loop system. The modified
voter identifies this problem immediately and switches
to the stabilizing minority decision. Finally, if we ana-
lyze the last state, S7, we conclude that all versions
cause instability, so a safety function (SF)31 shall be
called.

Table 2. Simulation scenario.

States Stable Instability NVP-MV Our designed Interval (s)

V1 V2 V3 Detector Decision Voter decision

S0 1 1 1 0 1–2–3 1–2–3 0–5
S1 1 1 0 0 1–2 1–2 5–10
S2 1 0 1 0 1–3 1–3 10–15
S3 0 1 1 0 2–3 2–3 15–20
S4 1 0 0 1 2–3 1 20–25
S5 0 1 0 1 1–3 2 25–30
S6 0 0 1 1 1–2 3 30–35
S7 0 0 0 1 1–2–3 SF 35–40

NVP-MV: N-version programming-multi-version; SF: safety function.

Figure 9. Algorithm of designed voter.

Figure 10. Markov diagram of system.
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For the real-time experiment, a controller board is
build, and a microprocessor is used to implement NVP-
MV algorithm. For inertial measurement, 9-degree-of-
freedom (DOF) sensor board is added to the controller
board. The sensor board has three axes gyroscope,
accelerometer, and magnetometer for measuring iner-
tial variations along these axes. The sensor fusion algo-
rithm and the filter are also implemented to increase
the reliability of sensor data. In the platform, the servos
and BLDCs are controlled by pulse width modulation
(PWM) signals.

In the experiment, BLDC’s starting PWM value is
1200ms and the controllable trust range is defined
within 1280 and 1380ms intervals.

The 1280ms PWM value is representing the base
trust for pitch moving of the platform. Therefore, the
PID output of pitch control is set at 0 to 100 intervals.
In the same manner, the roll PID output range is set-
tled for 220 to 20. The servos, in the test platform, are
settled at its PWM midpoint (1800ms) for vertical posi-
tion of BLDCs. The servo PWM operation interval is
defined as 250ms to +50ms from the midpoint. In
this way servos provide 65 degree tilt angle change for
BLDCs. In addition, PID controllers have dead band
around equilibrium points.

The NVP-MV algorithm is implemented for roll and
pitch PID controllers. Both PID controllers are

simultaneously examined with NVP-MV algorithm.
Platform stabilization point is arranged as roll and
pitch angles equal to zero. Therefore, the PID control-
ler’s desired reference value is also set to zero for roll
and pitch. Initially, the system is aligned with zero roll
and approximately �408 pitch angles.

In the experiment, three individual PID controllers,
which have the same parameters, are designed for roll
and pitch controls. PID controller parameters are deter-
mined. In addition, PID parameters which can lead to
system instability are also determined using the same
method (Table 3).

The control board has a frequency of 100Hz for
reading the sensors and calculating the PID outputs.
Therefore, the PWM signals of electronic speed con-
trollers (ESC) and servos can be updated every 10ms.
Besides, all system parameters are monitored every
10ms over a serial interface. Figure 11(a) and (b) shows
the roll and pitch response of the system and the corre-
sponding control signals, respectively.

In Figure 11(a) and (b), the control signal
outputs are correlated with PWM input of ESCs and
servos. The system output is directly representing the
roll and pitch angle of system. For roll control, the roll
PID output is added and subtracted from correspond-
ing PWM value of BLDCs. On the other hand, the
pitch PID output multiplication with servos’ tilt angle
is added ESCs base PWM value, in order to provide
necessary trust.

In Figure 11 for state S0 to S3, instability detector
outputs are 0 (False), because always two controllers
are producing a stabilizing control. S4 state tells us that
only Version 1 (PID 1) produces a stabilizing control,
and Version 2 (PID 2) and Version 3 (PID 3) make the
system unstable; however, since they are the majority,
NVP-MV chooses the output of Version 2 and Version
3. Our modified NVP-MV immediately switches to the
minority’s decision, which is Version 1. The voter
changes the final decision within the next sampling

Table 3. PID parameters.

Stable
value

Unstable
value

Roll (P) Proportional 3.2 0
(I) Integral 0.9 500
(D) Derivative 0.4 0

Pitch (P) Proportional 3.5 0
(I) Integral 1.2 500
(D) Derivative 0.6 0

PID: proportional–integral–derivative.

Figure 11. Roll–pitch experimental results: (a) roll response and (b) pitch response.
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time, which is 0.01 s. Like S4 state, S5 state only
Version 2 (PID 2) and S6 state only Version 3 (PID 3)
produce a stabilizing control signal which makes the
system stable.

In Figure 12(a) and (b), Roll and Pitch instability
detectors’ outputs are plotted. For S0, S1, S2, and S3
states, instability detectors output cannot be true
because majority voter chooses right pair of controllers.
But in the S4, S5, and S6 states, majority voter cannot
choose controller which makes the system stable. With
the instability detector becoming true, voter changes
decision with minority of controllers’ output. If the sys-
tem is in S7 state, all controller cannot produce a stabi-
lizing control signal and instability detectors output is
true. Then the system calls safety function.

Conclusion and future work

NVP-MV is an effective approach to improve the relia-
bility of a software and it requires an accurate decision
of correct and failed versions. In order to do so, using
algorithms rating, the correct answer needs to be
selected among the set of the plurality of calculation
results. Furthermore, NVP-MV is a practical approach
to enhance the quality of software for safety-critical
applications. However, if the NVP-MV chooses a
wrong decision, in other words, the majority is produc-
ing a faulty output, then this may lead to instability of
the system. In this paper, the NVP-MV is modified in
such a way that the voter checks the stability of the sys-
tem and does not always allow the majority to win if
they make the system unstable. The idea is demon-
strated on an experimental setup, the tilt-rotor system,
and the success of the proposed voter is shown. As a
future work, we will study the modified fuzzy voting
algorithms and modify the voter further with weighted
inputs. Furthermore, we will investigate how the system

will benefit from multiple instability detectors where
the decisions of instability detectors are also voted.
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