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1 Introduction
Let a real function f be defined on some nonempty interval I of real numbers. The function
f : I →R is said to be convex if the inequality

f
(
tu + (1 – t)v

) ≤ tf (u) + (1 – t)f (v)

holds for all u, v ∈ I and t ∈ [0, 1].
Convexity in connection with integral inequalities is an interesting research area since

much attention has been given to studying the concept of convexity and its variant forms in
recent years. Some of the most useful inequalities related to the integral mean of a convex
function are Hermite–Hadamard’s inequality, Jensen’s inequality, and Hardy’s inequality
(see [8, 23–25, 31]). Hermite–Hadamard’s inequality provides a necessary and sufficient
condition for a function to be convex. This well-known result of Hermite and Hadamard
is stated as follows:

If f is a convex function on some nonempty interval I of real numbers and [u, v] ∈ I with
u < v, then

f
(

u + v
2

)
≤ 1

v – u

∫ v

u
f (x) dx ≤ f (u) + f (v)

2
. (1)

This double inequality may be regarded as a refinement of the concept of convexity, and
it follows easily from Jensen’s inequality. Recently, a remarkable variety of generalizations
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and extensions have been considered for the concept of convexity, and related Hermite–
Hadamard type integral inequalities have been studied by many researchers (see, for ex-
ample, [1, 2, 6, 10, 11, 13, 17, 19, 21, 26, 28, 29, 32, 33] and the references cited therein).

2 Preliminaries
We recall the following well-known results and concepts.

Toader [36] introduced the concept of m-convex functions as follows.

Definition 2.1 ([36]) Let m ∈ [0, 1]. The function f : [0, v] →R is said to be m-convex if

f
(
tx + m(1 – t)y

) ≤ tf (x) + m(1 – t)f (y)

is satisfied for every x, y ∈ [0, v] and t ∈ [0, 1].

It can be easily seen that for m = 1, m-convexity reduces to the classical convexity of
functions.

Miheşan [22] defined the concept of (α, m)-convex functions as follows.

Definition 2.2 ([22]) Let α, m ∈ [0, 1]. The function f : [0, v] → R is said to be (α, m)-
convex if

f
(
tx + m(1 – t)y

) ≤ tαf (x) + m
(
1 – tα

)
f (y)

is satisfied for every x, y ∈ [0, v] and t ∈ [0, 1].

Obviously, (α, m)-convexity reduces to m-convexity for α = 1 and classical convexity for
α = m = 1.

For recent results, improvements and generalizations of the concepts of m-convexity
and (α, m)-convexity, please refer to the monographs [3–5, 9, 14, 15, 18, 20, 27, 30, 34, 35,
37, 38].

In [7], Dragomir and Agarwal proved the following result connected with the right part
of (1).

Lemma 2.1 ([7]) Let f : I◦ ⊆ R → R be a differentiable function on I◦ (interior of I) and
u, v ∈ I◦ with u < v. If f ′ ∈ L[a, b], then

f (u) + f (v)
2

–
1

v – u

∫ v

u
f (x) dx =

v – u
2

∫ 1

0
(1 – 2t)f ′(tu + (1 – t)v

)
dt.

Bakula et al. [4] established the following result by using Lemma 2.1 and Hölder’s integral
inequality.

Theorem 2.1 Suppose that I is an open real interval such that [0,∞) ⊂ I , and let 0 ≤ u <
v < ∞. Consider the differentiable function f : I →R on I such that f ′ ∈ L[u, v]. If |f ′|q is an
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m-convex function on [u, v] for some m ∈ (0, 1] and q ≥ 1, then

∣
∣∣∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣
∣∣∣

≤ v – u
4

min

{( |f ′(u)|q + m|f ′( v
m )|q

2

) 1
q

,
(m|f ′( u

m )|q + |f ′(v)|q
2

) 1
q
}

.

İşcan [12] obtained the following integral inequality which gives better results than the
classical Hölder integral inequality.

Theorem 2.2 (Hölder–İşcan integral inequality) Let f and g be two real functions defined
on [u, v]. If |f |p and |g|q are integrable functions on [u, v] for p > 1 and 1/p + 1/q = 1, then

∫ v

u

∣∣f (x)g(x)
∣∣dx ≤ 1

v – u

{(∫ v

u
(v – x)

∣∣f (x)
∣∣p dx

) 1
p
(∫ v

u
(v – x)

∣∣g(x)
∣∣q dx

) 1
q

+
(∫ v

u
(x – u)

∣∣f (x)
∣∣p dx

) 1
p
(∫ v

u
(x – u)

∣∣g(x)
∣∣q dx

) 1
q
}

≤
(∫ v

u

∣∣f (x)
∣∣p dx

) 1
p
(∫ v

u

∣∣g(x)
∣∣q dx

) 1
q

.

İşcan [12] proved the following Hermite–Hadamard type inequality by using Lemma 2.1
and the Hölder–İşcan integral inequality.

Theorem 2.3 Suppose that f : I◦ ⊆ R → R is a differentiable function on I◦ and u, v ∈ I◦

with u < v. If |f ′|q is a convex function on [u, v], then

∣
∣∣
∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣
∣∣
∣

≤ v – u

4(p + 1)
1
p

{(
2|f ′(u)|q + |f ′(v)|q

3

) 1
q

+
( |f ′(u)|q + 2|f ′(v)|q

3

) 1
q
}

. (2)

In [16], a different representation of the Hölder–İşcan integral inequality was given as
follows.

Theorem 2.4 (Improved power-mean integral inequality) Let f and g be two real func-
tions defined on [u, v]. If |f |, |f ||g|q are integrable functions on [u, v] for q ≥ 1, then

∫ v

u

∣∣f (x)g(x)
∣∣dx

≤ 1
v – u

{(∫ v

u
(v – x)

∣∣f (x)
∣∣dx

)1– 1
q
(∫ v

u
(v – x)

∣∣f (x)
∣∣∣∣g(x)

∣∣q dx
) 1

q

+
(∫ v

u
(x – u)

∣
∣f (x)

∣
∣dx

)1– 1
q
(∫ v

u
(x – u)

∣
∣f (x)

∣
∣
∣
∣g(x)

∣
∣q dx

) 1
q
}

≤
(∫ v

u

∣∣f (x)
∣∣dx

)1– 1
q
(∫ v

u

∣∣f (x)
∣∣∣∣g(x)

∣∣q dx
) 1

q
.
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3 Main results
Now we are in a position to establish some new Hermite–Hadamard type inequalities for
the classes of m-convex and (α, m)-convex functions.

Theorem 3.1 Suppose that I is an open real interval such that [0,∞) ⊂ I , and let 0 ≤ u <
v < ∞. Consider the differentiable function f : I →R on I such that f ′ ∈ L[u, v]. If |f ′|q is an
m-convex function on [u, v] for some m ∈ (0, 1] and q > 1, q = p

p–1 , then

∣∣
∣∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣∣
∣∣ ≤ v – u

4(p + 1)
1
p

(
λ

1
q
1 + λ

1
q
2
)
, (3)

where

λ1 = min

{2|f ′(u)|q + m|f ′( v
m )|q

3
,

2m|f ′( u
m )|q + |f ′(v)|q

3

}
,

λ2 = min

{ |f ′(u)|q + 2m|f ′( v
m )|q

3
,

m|f ′( u
m )|q + 2|f ′(v)|q

3

}
.

Proof From Lemma 2.1 and the Hölder–İşcan integral inequality, we have
∣
∣∣
∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣
∣∣
∣

≤ v – u
2

∫ 1

0
|1 – 2t|∣∣f ′(tu + (1 – t)v

)∣∣dt

≤ v – u
2

{(∫ 1

0
(1 – t)|1 – 2t|p dt

) 1
p
(∫ 1

0
(1 – t)

∣∣f ′(tu + (1 – t)v
)∣∣q dt

) 1
q

+
(∫ 1

0
t|1 – 2t|p dt

) 1
p
(∫ 1

0
t
∣
∣f ′(tu + (1 – t)v

)∣∣q dt
) 1

q
}

.

From m-convexity of |f ′|q on [u, v] for all t ∈ [0, 1] we have

∫ 1

0
t
∣∣f ′(tu + (1 – t)v

)∣∣q dt =
∫ 1

0
t
∣
∣∣
∣f

′
(

tu + m(1 – t)
v
m

)∣
∣∣
∣

q

dt

≤ 2|f ′(u)|q + m|f ′( v
m )|q

6
,

and analogously

∫ 1

0
t
∣∣f ′(tu + (1 – t)v

)∣∣q dt =
∫ 1

0
t
∣
∣∣∣f

′
(

mt
u
m

+ (1 – t)v
)∣

∣∣∣

q

dt

≤ 2m|f ′( u
m )|q + |f ′(v)|q

6
.

So we can write
∫ 1

0
t
∣∣f ′(tu + (1 – t)v

)∣∣q dt

≤ min

{2|f ′(u)|q + m|f ′( v
m )|q

6
,

2m|f ′( u
m )|q + |f ′(v)|q

6

}
. (4)
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Similarly, we have

∫ 1

0
(1 – t)

∣
∣f ′(tu + (1 – t)v

)∣∣q dt

≤ min

{ |f ′(u)|q + 2m|f ′( v
m )|q

3
,

m|f ′( u
m )|q + 2|f ′(v)|q

3

}
. (5)

Taking into account that

∫ 1

0
t|1 – 2t|p dt =

∫ 1

0
(1 – t)|1 – 2t|p dt

=
1

2(p + 1)
, (6)

we deduce from (4), (5), and (6) inequality (3). �

Remark 3.1 Choosing m = 1 in inequality (3), we get inequality (2).

Theorem 3.2 Suppose that I is an open real interval such that [0,∞) ⊂ I , and let 0 ≤ u <
v < ∞. Consider the differentiable function f : I →R on I such that f ′ ∈ L[u, v]. If |f ′|q is an
m-convex function on [u, v] for some m ∈ (0, 1] and q ≥ 1, then

∣∣
∣∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣∣
∣∣ ≤ v – u

8
(
μ

1
q
1 + μ

1
q
2
)
, (7)

where

μ1 = min

{3|f ′(u)|q + m|f ′( v
m )|q

4
,

3m|f ′( u
m )|q + |f ′(v)|q

4

}
,

μ2 = min

{ |f ′(u)|q + 3m|f ′( v
m )|q

4
,

m|f ′( u
m )|q + 3|f ′(v)|q

4

}
.

Proof Using Lemma 2.1 and an improved power-mean integral inequality, we have

∣∣∣
∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣∣∣
∣

≤ v – u

2.4
1
p

{(∫ 1

0
(1 – t)|1 – 2t|∣∣f ′(tu + (1 – t)v

)∣∣q dt
) 1

q

+
(∫ 1

0
(1 – t)|1 – 2t|∣∣f ′(tu + (1 – t)v

)∣∣q dt
) 1

q
}

.

By m-convexity of |f ′|q on [u, v] for all t ∈ [0, 1] we have

∫ 1

0
t|1 – 2t|∣∣f ′(tu + (1 – t)v

)∣∣q dt ≤ 3|f ′(u)|q + m|f ′( v
m )|q

16
,

and analogously

∫ 1

0
t|1 – 2t|∣∣f ′(tu + (1 – t)v

)∣∣q dt ≤ 3m|f ′( u
m )|q + |f ′(v)|q

16
.
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So we obtain
∫ 1

0
t|1 – 2t|∣∣f ′(tu + (1 – t)v

)∣∣q dt

≤ min

{3|f ′(u)|q + m|f ′( v
m )|q

16
,

3m|f ′( u
m )|q + |f ′(v)|q

16

}
. (8)

Similarly, we have

∫ 1

0
(1 – t)|1 – 2t|∣∣f ′(tu + (1 – t)v

)∣∣q dt

≤ min

{ |f ′(u)|q + 3m|f ′( v
m )|q

16
,

m|f ′( u
m )|q + 3|f ′(v)|q

16

}
. (9)

By using inequalities (8), (9) and the fact that
∫ 1

0 t|1 – 2t|dt = 1
4 , we get inequality (7). �

Corollary 3.1 Let the assumptions of Theorem 3.2 be satisfied. If we take m = 1, then in-
equality (7) becomes the following inequality:

∣
∣∣
∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣
∣∣
∣

≤ v – u
8

{(
3|f ′(u)|q + |f ′(v)|q

4

) 1
q

+
( |f ′(u)|q + 3|f ′(v)|q

4

) 1
q
}

. (10)

Theorem 3.3 Suppose that I is an open real interval such that [0,∞) ⊂ I , and let 0 ≤ u <
v < ∞. Consider the differentiable function f : I →R on I such that f ′ ∈ L[u, v]. If |f ′|q is an
(α, m)-convex function on [u, v] for some α, m ∈ (0, 1] and q > 1, q = p

p–1 , then

∣
∣∣
∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣
∣∣
∣

≤ v – u

4(p + 1)
1
p

(
ϕ

1
q

1 + ϕ
1
q

2
) ≤ v – u

4
(
ϕ

1
q

1 + ϕ
1
q

2
)
, (11)

where

ϕ1 = min

{
α|f ′(v)|q + 2m|f ′( u

m )|q
α + 2

,
2|f ′(u)|q + mα|f ′( v

m )|q
α + 2

}
,

ϕ2 = min

{2|f ′(u)|q + mα(α + 3)|f ′( v
m )|q

(α + 1)(α + 2)
,

2m|f ′( u
m )|q + α(α + 3)|f ′(v)|q
(α + 1)(α + 2)

}
.

Proof Using Lemma 2.1 and the Hölder–İşcan integral inequality, we have

∣∣
∣∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣∣
∣∣

≤ v – u
2

{(∫ 1

0
(1 – t)|1 – 2t|p dt

) 1
p
(∫ 1

0
(1 – t)

∣∣f ′(tu + (1 – t)v
)∣∣q dt

) 1
q

+
(∫ 1

0
t|1 – 2t|p dt

) 1
p
(∫ 1

0
t
∣
∣f ′(tu + (1 – t)v

)∣∣q dt
) 1

q
}

.
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By (α, m)-convexity of |f ′|q on [u, v] for all t ∈ [0, 1], we get

∫ 1

0
t
∣∣f ′(tu + (1 – t)v

)∣∣q dt

≤ min

{2|f ′(u)|q + mα|f ′( v
m )|q

2(α + 2)
,

2m|f ′( u
m )|q + α|f ′(v)|q
2(α + 2)

}
(12)

and

∫ 1

0
(1 – t)

∣∣f ′(tu + (1 – t)v
)∣∣q dt

≤ min

{2|f ′(u)|q + mα(α + 3)|f ′( v
m )|q

2(α + 1)(α + 2)
,

2m|f ′( u
m )|q + α(α + 3)|f ′(v)|q
2(α + 1)(α + 2)

}
. (13)

The proof of the first inequality in (11) is completed by the combination of inequalities
(12) and (13). The proof of the second inequality in (11) is completed using the fact

1
2

<
(

1
p + 1

) 1
p

< 1

for p > 1. �

Corollary 3.2 Let the assumptions of Theorem 3.3 be satisfied. If we take m = 1, then in-
equality (11) becomes the following inequality:

∣
∣∣
∣
f (u) + f (v)

2
–

1
v – u

∫
f (x) dx

∣
∣∣
∣

≤ v – u

4(p + 1)
1
p

[(
2|f ′(u)|q + α|f ′(v)|q

α + 2

) 1
q

+
(

2|f ′(u)|q + α(α + 3)|f ′(v)|q
2(α + 1)(α + 2)

) 1
q
]

.

Remark 3.2 Inequality (11) yields the right-hand side of Hermite–Hadamard inequality
(3) for α = 1.

Remark 3.3 Choosing (α, m) = (1, 1) in the first part of (11), we get inequality (2).

Theorem 3.4 Suppose that I is an open real interval such that [0,∞) ⊂ I , and let 0 ≤ u <
v < ∞. Consider the differentiable function f : I →R on I such that f ′ ∈ L[u, v]. If |f ′|q is an
(α, m)-convex function on [u, v] for some α, m ∈ (0, 1] and q ≥ 1, then

∣
∣∣
∣
f (u) + f (v)

2
–

1
v – u

∫ v

u
f (x) dx

∣
∣∣
∣ ≤ v – u

2.4
1
p

(
τ

1
q

1 + τ
1
q

2
)
, (14)

where

τ1 = min

{
κ1

∣∣f ′(u)
∣∣q + mκ2

∣
∣∣∣f

′
(

v
m

)∣
∣∣∣

q

, mκ1

∣
∣∣∣f

′
(

u
m

)∣
∣∣∣

q

+ κ2
∣∣f ′(v)

∣∣q
}

,

τ2 = min

{
κ∗

1
∣∣f ′(u)

∣∣q + mκ∗
2

∣
∣∣
∣f

′
(

v
m

)∣
∣∣
∣

q

, mκ∗
1

∣
∣∣
∣f

′
(

u
m

)∣
∣∣
∣

q

+ κ∗
2
∣∣f ′(v)

∣∣q
}
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such that

κ1 =
1

(α + 2)(α + 3)

[
α + 1 +

(
1
2

)α+1]
, κ2 =

1
4

– κ1,

κ∗
1 =

1
(α + 1)(α + 2)(α + 3)

[
α – 1 + (α + 3)

(
1
2

)α

– (α + 1)
(

1
2

)α+1]
, κ∗

2 =
1
4

– κ∗
1 .

Proof Similar to Theorem 3.2 and using (α, m)-convexity of |f ′|q, we get the desired re-
sult. �

Remark 3.4 If we take α = 1 in Theorem 3.4, inequality (14) reduces to inequality (7) in
Theorem 3.2.

Remark 3.5 Choosing α = 1 and m = 1 in Theorem 3.4, we get inequality (10).

4 Applications to special means
We now consider the applications of our results to the following special means for positive
real numbers u and v (u �= v).

(1) The arithmetic mean:

A := A(u, v) =
u + v

2
;

(2) The logarithmic mean:

L := L(u, v) =
v – u

ln v – ln u
;

(3) The generalized logarithmic mean:

Ln := Ln(u, v) =
[

vn+1 – un+1

(n + 1)(v – u)

] 1
n

, n ∈ Z\{–1, 0}.

Proposition 4.1 Let u, v ∈ R
+, u < v, m ∈ (0, 1], and n ∈ Z\{–1, 0}. Then, for all q ≥ 1, we

have

∣∣A
(
un, vn) – Ln

n(u, v)
∣∣

≤ n.
v – u

8

{(
min

{3|u|q(n–1) + m| v
m |q(n–1)

4
,

3m| u
m |q(n–1) + m|v|q(n–1)

4

}) 1
q

+
(

min

{ |u|q(n–1) + 3m| v
m |q(n–1)

4
,

m| u
m |q(n–1) + 3|v|q(n–1)

4

}) 1
q
}

.

If we choose m = 1, we obtain

∣∣A
(
un, vn) – Ln

n(u, v)
∣∣

≤ n.
v – u

8

[(
3|u|q(n–1) + |v|q(n–1)

4

) 1
q

+
( |u|q(n–1) + 3|v|q(n–1)

4

) 1
q
]

.
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Proof The assertions follow from Theorem 3.2 and Corollary 3.1 applied respectively to
the m-convex mapping f (x) = xn, x ∈R, n ∈ Z. �

Proposition 4.2 Let u, v ∈ R
+, u < v, α, m ∈ (0, 1], and n ∈ Z\{–1, 0}. Then, for all q ≥ 1,

we have

∣∣A
(
un, vn) – Ln

n(u, v)
∣∣

≤ n.
v – u

4(p + 1)
1
p

{(
min

{2|u|q(n–1) + mα| v
m |q(n–1)

α + 2
,

2m| u
m |q(n–1) + α|v|q(n–1)

α + 2

}) 1
q

+
(

min

{2|u|q(n–1) + mα(α + 3)| v
m |q(n–1)

(α + 1)(α + 2)
,

2m| u
m |q(n–1) + α(α + 3)|v|q(n–1)

(α + 1)(α + 2)

}) 1
q
}

.

If we choose m = 1, we obtain

∣
∣A

(
un, vn) – Ln

n(u, v)
∣
∣

≤ n.
v – u

4(p + 1)
1
p

[(
2|u|q(n–1) + α|v|q(n–1)

α + 2

) 1
q

+
(

2|u|q(n–1) + α(α + 3)|v|q(n–1)

(α + 1)(α + 2)

) 1
q
]

.

Proof The assertions follow from Theorem 3.3 and Corollary 3.2 applied respectively to
the (α, m)-convex mapping f (x) = xn, x ∈R, n ∈ Z. �
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