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Abstract—We focus on Gaussian interference channels (GICs)
and study the Han-Kobayashi (HK) coding strategy for the two-
user case with the objective of designing implementable (explicit)
channel codes. Specifically, low-density parity-check (LDPC)
codes are adopted for use over the channel, their benefits are
studied and suitable codes are designed. Iterative joint decoding
is used at the receivers, where independent and identically
distributed (i.i.d.) channel adapters are used to prove that log-
likelihood-ratios (LLRs) exchanged among the nodes of the Tan-
ner graph enjoy symmetry when BPSK or QPSK with Gray cod-
ing is employed. This property is exploited in the proposed code
optimization algorithm adopting a random perturbation technique.
Code optimization and convergence threshold computations are
carried out for different GICs employing finite constellations by
tracking the average mutual information. Furthermore, stability
conditions for the admissible degree distributions under strong
and weak interference levels are determined. Via examples, it is
observed that the optimized codes using BPSK or QPSK with
Gray coding operate close to the capacity boundary for strong
interference. For the case of weak interference, it is shown that
nontrivial rate pairs are achievable via the newly designed codes
which are not possible by single user codes with time-sharing.
Performance of the designed codes is also studied for finite block
lengths through simulations of specific codes picked with the
optimized degree distributions with random constructions, where,
for one instance, the results are compared with those of some
structured designs.

Index Terms—Low-density parity-check codes, code design,
Gaussian interference channels, Han-Kobayashi coding, iterative
joint decoding.

I. INTRODUCTION

There is a large body of work on two-user Gaussian interfer-

ence channels (GICs), in which two independent transmitters

communicate with their intended receivers through a shared
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medium. In spite of this intense research, full characterization

of the capacity region is still an open problem, and only

inner and outer bounds on achievable rates are available in

the literature. The best reported inner bound to date is due

to Han and Kobayashi referred as the Han-Kobayashi (HK)

coding scheme [1]. Despite the superiority of the HK strategy,

there is no work on exploring explicit and implementable

channel codes adopting this technique in the current literature.

With this motivation, in this paper, we study the design and

performance of low-density parity-check (LDPC) codes over

GICs implementing the HK strategy.

LDPC codes have been shown to achieve a performance

extremely close to the Shannon limit for point-to-point (P2P)

channels [2]. They have also been successfully applied to

multi-user channels, where promising results have been ob-

tained. For instance, capacity (or capacity bound) approach-

ing codes are designed for two-user multiple-access chan-

nels (MACs), Gaussian broadcast channels, and relay chan-

nels [3]–[8]. There is also a recent work on the use of

LDPC codes on symmetric GICs under weak interference [9].

However, there is no work in the existing literature on explicit

code designs for GICs implementing the HK strategy in a

practical manner.

In this paper, we investigate the performance of irregular

LDPC codes over two-user GICs with fixed channel gains

(also cf. [10]). We adopt finite constellations for transmission

as Gaussian codebooks cannot be used due to practical trans-

mission constraints such as synchronization, encoding, and

decoding limitations. In the proposed scheme, the message of

each transmitter is split into private and public parts encoded

by separate LDPC codes. The encoded bits are modulated

and superimposed to generate the transmitted signal. At each

receiver, the public messages and the intended private message

are jointly decoded in an iterative fashion.

Symmetry of the channel outputs considerably simplifies the

analysis of the decoder for LDPC codes over P2P channels.

In order to simplify the analysis for our multi-user setting in

a similar manner, we exploit the independent and identically

distributed (i.i.d.) channel adapters introduced in [11]. We

propose a code optimization algorithm, based on a specific

instance of differential evolution [12] where, at each itera-

tion, perturbing vectors are utilized to generate the so-called

admissible degree distributions for which the corresponding

probability of decoding error tends to zero asymptotically. To

simplify the design process, we prove a symmetry property

of the exchanged log-likelihood-ratios (LLRs) within the joint

decoder for BPSK and QPSK with Gray coding using the
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assumption that the Tanner graph of the joint decoder is

cycle-free and the exchanged LLRs within the decoder are

independent. The symmetry of the exchanged LLRs plays a

key role in simplifying the mutual information calculations

exploited to verify the admissibility of the perturbed degree

distributions. Stability conditions are also derived for strong

and weak interference levels employing BPSK and QPSK with

Gray coding to ensure that the optimized codes do not suffer

from elevated error floors.

Throughout the paper, for comparison purposes we will

use naive and non-naive time sharing (TS) strategies. Under

naive TS, we have individual power constraints for each

user’s transmitted symbols. This is motivated by the practical

limitations in the transmission process, e.g., due to restrictions

on the power amplifiers. Under non-naive TS the users can

increase their individual power levels for a certain fraction of

the total transmission time while keeping the average power

over the entire codeword under a certain value.

Having implemented the HK strategy, we carry out the

code optimization for symmetric and asymmetric GICs for

various scenarios with different levels of interference. In all

the investigated examples, it is observed that the optimized

codes for the two-user GIC outperform P2P codes optimized

for the binary-input additive white Gaussian noise (BI-AWGN)

channel, and for most cases significant improvements are

possible. Promising results are obtained under strong inter-

ference and rate pairs very close to the capacity boundaries

are achieved. Under weak interference, the message of each

transmitter is composed of private and public parts, therefore

a power allocation optimization is performed prior to the code

optimization. It is observed in this case that non-trivial rate

pairs, which are not achievable with P2P codes used with TS,

are attainable. We also provide simulation results with specific

finite-length codes picked from the optimized code ensembles

utilizing random constructions. Furthermore, the performance

of the random constructions is compared to that of structured

constructions utilizing an algebraic design approach.

The rest of the paper is organized as follows. In Section

II, the system model is described, and computation of a sub-

region of the HK achievable rate region (ARR) is summarized.

In Section III, the implementation of the HK coding and

decoding strategies and operations at the transmitter and re-

ceiver sides are described. In Section IV, i.i.d. channel adapters

are introduced, a symmetry property of the exchanged LLRs

under joint decoding is proved, stability conditions on the

degree distributions of public and private messages are derived,

and the proposed code optimization approach is detailed. In

Section V, performance of the P2P and the optimized LDPC

codes is investigated via a multitude of examples. In Section

VI, finite block length code simulation results are provided,

and finally, in Section VII, the paper is concluded.

II. SYSTEM MODEL AND PRELIMINARIES

The input-output relationship for the two-user GIC (as

illustrated in Fig. 1) is expressed as

Y1 = h11X1 + h21X2 + Z1,

Y2 = h12X1 + h22X2 + Z2, (1)

where hij is the fixed complex channel gain from the user i to

the receiver j. Z1 and Z2 are i.i.d. circularly symmetric com-

plex Gaussian noise samples with zero mean and N0

2 variance

per dimension. X1 and X2 are the transmitted complex signals

with individual power constraints of P1 and P2, respectively,

that is, E{|Xi|2} ≤ Pi (i = 1, 2). Signal-to-noise-ratio (SNR)

and interference-to-noise-ratio (INR) at receiver i are defined

as

SNRi =
|hii|2Pi

N0
, INRi =

|hji|2Pj

N0
,

where i, j = 1, 2 and i 6= j. Based on the interference

and signal levels, the interference can be categorized as

strong (INRi > SNRj), weak (SNRi > INRj), or

mixed (INRi > SNRj , INRj < SNRi). For the case of a

symmetric GIC, h11 = h22, h12 = h21, SNR1 = SNR2 =
SNR, and INR1 = INR2 = INR.

Fig. 1. Two-user GIC block diagram.

HK ARR Computation

The HK ARR is the best known inner bound on the capacity

of interference channels. Under strong interference, this inner

bound treats all messages as public [13] and characterizes

the capacity region. Despite the superiority of the HK cod-

ing scheme, the computation of the entire rate region is

prohibitively difficult since one should perform an optimiza-

tion over the joint probability distribution of many random

variables with large cardinalities. Authors in [14] provide a

simplified expression of the rate region which is still difficult

to compute. In this paper, the focus is on GICs, and instead

of the entire region, a sub-region is obtained with a lower

complexity by considering the superposition of independent

uniformly distributed inputs from specific constellations as

transmitted signals with no TS [1]. Denoting the code rates

at the transmitters 1 and 2 by R1 and R2, respectively, the

rate vector R = [R1, R2]
t is in the sub-region R0 if

R0 = {R|AR ≤ Ψ(P1, P2, α1, α2)}, (2)

where
Ψ = [ρ1, ρ2, ρ12, ρ10, ρ20]

t,

At =

[

1 0 1 2 1
0 1 1 1 2

]

,
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and αi denotes the fraction of the power allocated to the

private message of user i. In (2), the inequality sign is applied

element-wise and Ψ is defined in [1, pp. 54–55]. As (2)

suggests, different power allocations to the public and private

messages give rise to different sub-regions. Thus, the above

sub-region can be enlarged to

R1 =
⋃

(α1,α2)∈[0,1]×[0,1]

R0(P1, P2, α1, α2).

Since R1 is not necessarily convex, it can be further enlarged

by a convex hull operation. We denote the resulting sub-region

by R, which is an inner bound for the actual ARR. We note

that, as mentioned in [1], the introduced inner bound may not

cover the entire rate region obtained by non-naive TS. For

instance, Fig. 9 demonstrates the inner bounds (HK ARR) R1

for a finite constellation and for Gaussian signaling where it is

clear that the non-naive TS rate region is not contained within

the inner bound R1.

There are four main outer bounds for the rate region of

GICs in the literature. The first bound is obtained in [15] for

the degraded GIC based on the capacity region of a specific

degraded broadcast channel. The second is due to Kramer for

a GIC with weak interference where the bound is attained by

discarding one of the interfering links in the channel [16]. The

third is proposed by Etkin et al. for a general GIC exploiting

a genie-aided technique [17]. The fourth, which is the most

recent one, is reported by Motahari and Khandani based on

the concept of admissible channels [18]. In this paper, we

use the results of [17] since the bounds require only simple

calculations and are shown to be within one bit of the capacity

region.

III. IMPLEMENTATION OF THE HK ENCODING AND

DECODING SCHEME

A. Encoding

Considering the HK coding scheme, the message of each

user is divided into two parts, namely, the private message (U )

and the public message (W ). The public messages are de-

codable at both receivers while the private messages are only

decodable at the intended receivers. Although in the general

scheme messages are split into public and private parts, there

are special cases where there may be no need to allocate

the power to both; for instance, under strong interference,

both users’ messages are public (and no private message is

transmitted) since all the messages are decodable at both

receivers.

Fig. 2 shows the block diagram of the transmitter incor-

porating the HK coding scheme wherein the messages of

each transmitter (U and W ) are encoded with separate LDPC

codes (resulting in Cu and Cw). The resulting bits are then

modulated (denoted by Xu and Xw) and superimposed to form

the overall transmitted signal (X). Here, we superimpose the

two signals with standard addition; however, it is also possible

to consider other alternatives. For instance, superimposing of

two signals can be done in the “code” domain through modulo-

2 addition (which may be the proper choice in the case of

binary input channels), however, this scheme would require

a different code optimization which is out of the scope of

this paper. As another example, it is also possible to consider

higher order signal constellations, and perform mappings of

the public and private coded bits to the constellation points

jointly. It should further be emphasized that our focus is

on practical modulation techniques such as PSK signaling

since Gaussian signaling (as usually assumed in information

theoretic studies) cannot be used in practical systems.

Fig. 2. Construction of the transmitted signal for the proposed implementation
of the HK coding scheme.

B. Decoding

At the receiver side, the public messages and the private

message of the desired user are decoded by utilizing a belief-

propagation (BP) algorithm wherein the soft-information about

the messages are exchanged within the decoder in an iterative

fashion [19]. Different decoding schemes are possible, namely,

successive interference cancellation (SIC) (see, e.g. [20], [21])

and joint decoding (JD) [3], as illustrated in Figs. 3(a)

and 3(b).

In SIC, decoding is done sequentially adopting component

LDPC decoders where the decoded messages at each stage are

subtracted from the original signal until all the messages are

estimated. It is possible to improve the overall performance by

iterating between the component LDPC decoders. Under JD, in

contrast to SIC, decoding of the messages are performed con-

currently and in rounds. Each round starts with computing the

LLRs to be fed to the component LDPC decoders, where each

decoder runs for some iterations utilizing the BP algorithm.

The round is completed by passing the updated LLRs from

the variable nodes to the so-called state nodes, denoted with

the black circle in the figure. In the following, we discuss the

details of the joint decoding employed throughout the paper.

1) Scheduling: The exchange of LLRs between the com-

ponent LDPC decoders and the state nodes can be performed

serially or in parallel. In parallel scheduling all component

LDPC decoders run simultaneously whereas in serial schedul-

ing only one component LDPC decoder is active at each

iteration [3]. This process is repeated until all the messages are

decoded, or a predetermined number of iterations is reached.

2) LLR Computation at the State Nodes: The LLR of the

ith coded bit of message j at receiver k is computed as

L
(

cj(i), Yk(i)
)

= log

(

fYk

(

Yk(i)|cj(i) = 0
)

fYk

(

Yk(i)|cj(i) = 1
)

)

, (3)

where cj(i) is the ith coded bit of message j, which can be

a public message or the intended private message, and fYk

represents the probability density function (PDF) of Yk. Con-

sidering parallel scheduling, upon the start of each iteration,
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(a) SIC block diagram

(b) Joint decoder block diagram.

Fig. 3. Block diagram of the decoder structures at receiver 1 (p, q = 1, 2, p 6=

q). X̂ denotes the decoded message for the transmitted message X .

the LLR corresponding to cj(i) provided to the component

LDPC decoder of message j is computed at the state nodes

by marginalization, that is,

L
(

cj(i), Yk(i)
)

= log

(∑

Ci∈S
j+
i

fYk

(

Yk(i)|Ci

)

P
(

Ci

)

∑

Ci∈S
j−
i

fYk

(

Yk(i)|Ci

)

P
(

Ci

)

)

,

(4)

where Ci is the vector comprising the ith coded

bits of all public and private codewords, i.e.,

Ci = {cu1(i), cw1(i), cu2(i), cw2(i)} and P (Ci) denotes

the probability of Ci which is determined by the outputs

of component LDPC decoders and gets updated at each

iteration. Sj+
i and Sj−

i denote the subsets of the codewords

with cj(i) = 0 and cj(i) = 1, respectively. Note that at

the receiver r, Uk (k 6= r) is not decoded, hence, the

corresponding component in Ci does not get updated and

remains constant throughout the iterations. The computation

of the extrinsic LLRs at the state nodes for BPSK differs

from that for higher order modulations such as QPSK. For

BPSK, the extrinsic LLRs sent to each component LDPC

decoder are updated based on the received LLRs from other

component LDPC decoders. In contrast, for higher order

modulations, the LLR sent from each variable node to the

connected state node contributes to the updated extrinsic

LLR sent to its neighbor node(s) from that state node. For

instance, Fig. 4 illustrates a portion of the joint decoder for

QPSK, where each state node is connected to two variable

nodes, hence, the LLR sent from each variable node to the

state node contributes to the updated extrinsic LLR sent to

its neighbor.

IV. ANALYTIC PROPERTIES AND OPTIMIZATION OF LDPC

CODES OVER GICS

The objective in this section is to develop an optimization

method for LDPC code ensembles over GICs. Irregular LDPC

codes have previously been employed for communication over

Fig. 4. The Tanner graph representation of LDPC codes with QPSK mapping.
Lcv , Lvc, Lsv , and Lvs represent the extrinsic LLRs sent from the check
nodes to the variable nodes, variable nodes to the check nodes, state nodes
to the variable nodes, and variable nodes to the state nodes, respectively.

different multi-user channels due to their excellent perfor-

mance [3], [5], [6]. In this paper, we follow similar ideas, and

consider their use over GICs. Following the notation in [2],

an ensemble of irregular LDPC codes (λ, ρ) is described with

λ(x) =

dv
∑

i=2

λix
i−1 and ρ(x) =

dc
∑

i=2

ρix
i−1,

where dv and dc are the maximum degrees of variable and

check nodes, respectively, and the design rate of the LDPC

code is

r = 1−
∑

i ρi/i
∑

i λi/i
.

An LDPC code ensemble is shown to exhibit arbitrarily small

error probability under iterative decoding beyond a certain

threshold. The threshold for P2P AWGN channels is controlled

by the noise power, however, for GICs, the channel gains for

the direct and the interference links are also required for its

characterization.

Density evolution is the most accurate available tool to

calculate the threshold of an LDPC code ensemble. This

method tracks the PDF of the exchanged LLRs between the

variable and check nodes analytically; however, under joint

decoding, due to the non-linearity of the update rule at the

state nodes, it is very difficult to characterize the PDF of

the outgoing LLRs from the state nodes. Furthermore, the

computation becomes cumbersome for multiuser scenarios

where the PDFs of multiple users’ LLRs are involved. An

EXIT chart analysis is an alternate method which tracks the

mutual information evolution between the transmitted bits and

exchanged LLRs wherein the PDF of the LLRs are assumed to

be Gaussian. Although the Gaussianity assumption simplifies

the code design procedure and has lead to well-performing

codes for certain multi-user channels, our implementations

show that this approximation leads to imprecise results when

a joint decoder is employed as in our set-up. In other words,

for certain ranges of the channel parameters, the thresholds

obtained with Gaussian assumption significantly differ from

the ones obtained through finite block length code simula-

tions. Therefore, we propose a code optimization utilizing a

specific instance of differential evolution algorithm wherein

the convergence of the joint decoder for the adopted degree
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distributions is checked by tracking the evolution of the mutual

information with no Gaussianity assumption on the exchanged

LLRs.

In the following, we review i.i.d. channel adapters and prove

a symmetry property of the exchanged LLRs within the joint

decoder. Furthermore, we study the stability conditions for

the degree distributions of the public and private messages for

different interference levels.

A. I.I.D. Channel Adapters

Symmetry of the channel output is defined as

fY (Y (i)|c(i) = 0) = fY (−Y (i)|c(i) = 1),

where Y (i) and c(i) refer to the ith channel output and the

ith coded bit, respectively. This property greatly simplifies

the decoding analysis of LDPC codes [22]. Unfortunately, the

property does not hold for multi-user scenarios. To remedy

this problem, the authors in [11] introduced a tool called

i.i.d. channel adapters enforcing the symmetry of the channel

outputs for multi-user channels wherein random sequences

are deployed with common randomness at the transmitter and

receiver sides for each message. We note that an alternative is

to use the chaining technique described in [23], which does

not require sharing of common randomness between each

pair of the transmitters and the receivers. Here, we utilize

the i.i.d. channel adapters for private and public messages to

make sure that the channel outputs are symmetric and analysis

becomes tractable; however, it should be noted that the i.i.d.

channel adapters are employed to simplify the analysis and

are not implemented during the actual encoding and decoding

processes.

B. LLR Symmetry Property

The PDF of the LLRs sent from the state nodes to the

component LDPC decoder of message j is symmetric if

l = log
( fL(l|cj(i) = 0)

fL(−l|cj(i) = 0)

)

, l ∈ R.

It is shown in [24] that for a BI-AWGN channel the symmetry

property holds for the PDF of the channel LLRs delivered

to the iterative decoder and the property is preserved for

the exchanged LLRs in the decoder throughout the decoding

iterations. In contrast to BI-AWGN channels, for multi-user

channels, wherein a joint decoder is employed at the receiver,

the LLRs sent from the state nodes to each component LDPC

decoder depend on both the channel LLRs and the extrinsic

LLRs received from the other component LDPC decoders. In

the following, we prove the symmetry property for the LLRs

exchanged within the joint decoder for the considered GICs

adopting BPSK or QPSK with Gray coding.

Theorem 1. Consider a receiver in a two-user output-

symmetric GIC for which the private and public messages are

obtained by BPSK or QPSK with Gray coding1. For a joint

1The result also holds for higher order modulations if the corresponding
constellation is symmetric with respect to origin and the sequences of bits
assigned to two symmetric points in the constellation are flipped versions of
one another.

decoder with a cycle free Tanner graph, the extrinsic LLR sent

from the state node to the variable node of the component

LDPC decoder of message j is inverted if the signs of the

channel outputs and the a-priori LLRs received from the other

component LDPC decoders are inverted.

Proof: We denote the LLR sent from the state node to

the variable node of the component LDPC decoder of message

j obtained by inverting the signs of the channel outputs and

the a-priori LLRs received from the other component LDPC

decoders by L′
sv and show that

Lsv = −L′
sv. (5)

We show the property for QPSK with Gray coding, and

simply note that the case of BPSK can be handled similarly.

Considering Gray coding, the real and imaginary parts of the

ith transmitted symbol Xm(i) (m can be a public message

or the intended private message) are

√

Pm

2 (1− 2cm(2i)) and
√

Pm

2 (1 − 2cm(2i+ 1)), respectively. It can easily be shown

that

P
(

Re(Xm(i)) = ±
√

Pm

2

)

=
exp
(

±Lvs(cm(2i))
)

1+exp
(

±Lvs(cm(2i))
) ,

P
(

Im(Xm(i)) = ±
√

Pm

2

)

=
exp
(

±Lvs(cm(2i+1))
)

1+exp
(

±Lvs(cm(2i+1))
) .

(6)

Using (4), (6), and the fact that LLRs sent along all the edges

in a cycle free Tanner graph are independent, (5) follows

completing the proof.

Considering (3) and Theorem 1, it is easy to show that the

symmetry property of the LLRs sent from the state nodes to

the variable nodes holds, and since the property is preserved

under BP [2], the property holds for all the LLRs exchanged

within the joint decoder. The symmetry property of the LLRs

can be exploited to show that [25]

I(L; c) = 1− E
{

log2(1 + e−L)
}

, (7)

where I(L; c) denotes the mutual information between the

exchanged LLR L and the corresponding coded bit c assuming

that the all zero-codeword is transmitted. The expectation

in (7) can be computed by invoking the ergodicity assumption

for the exchanged LLRs. As a result, the mutual information

calculations can be performed without requiring the analytical

PDFs of the exchanged LLRs, which plays a key role in the

proposed code optimization approach.

C. Stability Condition

The stability condition was first introduced in [2] to analyze

the convergence behavior of the iterative decoder when the

probability of the decoding error is close to zero. It was

also examined in the context of Gaussian broadcast channels

in [5] for a cycle free joint decoder with two component

decoders. Here, we analyze the stability conditions for the joint

decoder adopted for the two-user GIC when the HK strategy is

implemented for different cases. For the sake of analysis, we

assume that the joint decoder has run for a sufficient number

of iterations so that the performance of each component LDPC



0090-6778 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCOMM.2014.2385856, IEEE Transactions on Communications

6

decoder has reached to steady state. To analyze the stability

condition, similar to [5], the PDFs of the LLRs corresponding

to the ith coded bit of message m (m can be a public message

or the intended private message), sent from the check nodes to

the ith variable node of the corresponding component LDPC

decoder, conditioned on having transmitted all-zero codeword

for message m, is expressed as

fL(l) = (1 − ǫm)∆∞ + ǫm∆0, (8)

where ∆a denotes the Dirac delta function at a and ǫm ≈ 0
is the probability of the error for message m. Note that the

assumption of transmitting the all-zero codeword is valid for

all the messages when channel adapters are employed. For a

cycle free Tanner graph, the PDF of the LLRs sent from the

variable nodes to the state nodes evolves from (8) to

fL(l) = (1− ǫ2m)∆∞ +O(ǫ2m), (9)

which implies that P
(

cm(i) = 0
)

= 1− ǫ2m. Considering (4),

at the receiver k, the update rule at the state nodes for

L
(

cj(i), Yk(i)
)

, can be written as

L
(

cj(i), Yk(i)
)

= L
(

cj(i), Y
′
k(i)

)

+O(ǫ2),

where j can be a public message or the intended private

message and ǫ = max{ǫm1 , ǫm2}. Y ′
k(i) is the ith modified

channel output symbol with respect to the message j at the

receiver k, which is obtained by removing the effect of the

messages m1 and m2. To simplify the analysis, we neglect

the effect of O(ǫ2) and work with the modified channel output

Y ′
k .

Following the approach taken in [5], we derive the stability

conditions for the degree distributions of public and private

messages under strong and weak interference levels. Note that

both receivers should be analyzed in deriving the stability

condition for the degree distributions of public messages

while for the degree distribution of each private message

only the intended receiver needs to be considered. Since the

computations of the LLRs at the state nodes for real and

complex signaling are not the same (refer to Fig. 3 and Fig.

4), we separately derive the conditions for BPSK with real

channel gains and QPSK with Gray coding with complex

channel gains.

1) Strong Interference: Under strong interference the mes-

sages are transmitted as public, therefore the stability condition

is only derived for the degree distributions of public messages.

BPSK with Real Channel Gains: For this case, the channel

gains and the transmitted symbols are real, hence the imagi-

nary part of the received signal can be discarded. At receiver

k, the modified channel output with respect to Wi is obtained

as

Y ′
k = hikXwi

+Re(Zk),

which resembles a P2P channel and the existing results in [2]

can be utilized. Considering both receivers, since INRj >
SNRi , i 6= j, the stability condition for (λwi

, ρwi
) is

expressed as

λ′
wi
(0)ρ′wi

(1) < eSNRi , i = 1, 2.

QPSK with Gray Coding and Complex Channel Gains: For

QPSK with Gray coding, each state node in the Tanner graph

of the joint decoder is connected to two successive variable

nodes corresponding to the real part and the imaginary part

of the transmitted symbol. Without loss of generality, we

consider the variable node corresponding to the real part of

the transmitted symbol Xwi
in the joint decoder at the receiver

k. The modified channel output with respect to Re(Xwi
) is

obtained as

Y ′
k = hik Re(Xwi

) + Zk.

Therefore, similar to the previous case, the stability condition

for (λwi
, ρwi

) is

λ′
wi
(0)ρ′wi

(1) < e
SNRi

2 , i = 1, 2.

2) Weak Interference: Under weak interference, the two

public messages and the intended private message are decoded

at each receiver, i.e., the private message of the interfering

signal is not decoded, and the corresponding part is present in

the modified channel output.

BPSK with Real Channel Gains: For this scenario, the mod-

ified channel output at the receiver k with respect to the

message Uk is

Y ′
k = hkkXuk

+ hrkXur
+Re(Zk) k 6= r,

which is similar to the channel studied in [5], hence the

stability condition for (λuk
, ρuk

) is given by

λ′
uk
(0)ρ′uk

(1) <

(

e−αkSNRk−αrINRk

×EN1

{

√

cosh(2N1

√
2αrINRk)+cosh(4

√
αrαkSNRkINRk)

2

})−1

,

where EN1 denotes the expectation taken with respect to a

standard Gaussian random variable N1 ∼ N (0, 1). Similarly,

the modified channel outputs with respect to Wk at the receiver

k and r (k 6= r) are obtained as

Y ′
k = hkkXwk

+ hrkXur
+Re(Zk),

Y ′
r = hkr(Xwk

+Xuk
) + Re(Zr).

Considering both receivers, the stability condition for

(λwk
, ρwk

) is obtained as

λ′
wk

(0)ρ′wk
(1) < min

{(

e−(1−αk)SNRk−αrINRk

×EN1

{√

cosh(2N1

√
2αrINRk)+cosh(4

√
(1−αk)αrSNRkINRk)

2

}

)−1

,

(

e−INRr

×EN1

{√

cosh(2N1

√
2αkINRr)+cosh(4INRr

√
(1−αk)(αk))

2

}

)−1}

.

QPSK with Gray Coding and Complex Channel Gains: Similar

to the strong interference case, we consider the LLR sent from

the state node to the variable node corresponding to the real

part of the message of interest. Therefore, the modified channel
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output with respect to Uk is obtained as

Y ′
k = hkk Re(Xuk

) + hrkXur
+ Zk,

where k 6= r. The stability condition for (λuk
, ρuk

) can be

obtained by computing the Bhattacharyya constant [5] for the

modified channel output resulting in

λ′
uk
(0)ρ′uk

(1) <

(

e−
αkSNRk

2 −αrINRk

×EN1N2

{

√

g(N1, N2, hkk

√

αkPk

2 , hrk

√

αrPr

2 )

})−1

, r 6= k,

where N1 and N2 are Gaussian random variables with zero

mean and variance 1
2 , and

g(N1, N2, A1, A2)

= 1
16

1
∑

a=0

1
∑

b=0

1
∑

c=0

1
∑

d=0

exp

(

1
N0

(

2N1

(

A2i(−1)a

−A2q (−1)b +A2i(−1)c − A2q (−1)d
)

− 2A1i

(

A2i(−1)a

−A2q (−1)b −A2i(−1)c + A2q (−1)d
)

+ 2N2

(

A2i(−1)b

+A2q (−1)a +A2i(−1)d +A2q (−1)c
)

− 2A1q

(

A2i(−1)b

+A2q (−1)a −A2i(−1)d −A2q (−1)c
)

)

)

,

(10)

where Aji and Ajq in (10) denote the real and imaginary parts

of Aj , respectively, with j = 1, 2. Similar analysis can be

performed for (λwk
, ρwk

) considering both receivers, where

the stability condition is expressed as

λ′
wk

(0)ρ′wk
(1) < min

{(

e−
(1−αk)SNRk

2 −αrINRk

×EN1N2

{

√

g(N1, N2, hkk

√

(1−αk)Pk

2 , hrk

√

αrPr

2 )

})−1

,

(

e−
(1+αk)INRr

2

×EN1N2

{

√

g(N1, N2, hkr

√

(1−αr)Pr

2 , hkr

√

αrPr

2 )

})−1}

.

D. Proposed Code Optimization Method

To initialize the code optimization procedure, for each of the

involved messages, we select the degree distributions of the

LDPC codes among the optimized P2P codes for BI-AWGN

channels (obtained via the EXIT chart method in [26]). The

selected degree distributions are then employed for the two-

user GIC and checked whether they are admissible for the

given channel parameters, that is, if the probability of decoding

error for the corresponding code goes to zero asymptotically.

To verify this, we assume that the joint decoder is cycle

free and run the decoder with a sufficient number of state

nodes (taken as 106 in our examples) fed with realizations

of the channel outputs. The employed degree distributions are

declared admissible if, for each component LDPC decoder,

the mutual information between the transmitted bits and the

exchanged LLRs within the component LDPC decoder evolves

to 0.995. Note that we do not simulate any specific code

realization, hence the adopted method captures the average

behavior of the code ensembles by tracking the evolution of the

mutual information without using any Gaussianity assumption

for the PDFs of the exchanged LLRs within the joint decoder.

Having obtained the admissible degree distributions, per-

turbing vectors are utilized to generate a new instance of de-

gree distributions with increased rates following the approach

utilized in [27] in an iterative fashion. To simplify the code

optimization, we assume that the check node degree distri-

bution is a singleton and it does not change throughout the

iterations; therefore, only the variable node degree distribution

is perturbed as λ̃i = λi+ ei, where ei denotes the ith element

of the perturbing vector and λ̃i represents the ith coefficient

of λ̃. For the variable node degree distribution to be valid,
∑dv

i=2 λ̃i = 1, which enforces

dv
∑

i=2

ei = 0 and 0 ≤ λi + ei ≤ 1. (11)

At each iteration, the current rate (r0) is increased by the rate

increment K , that is,

1− 1

dc

1
∑

i
λ̃i

i

= r0 +K,

which implies that

∑

i

λ̃i

i
=

1

dc
(

1− r0 −K
) ,

resulting in
∑

i

ei
i
=

K

dc
(

(1 − r0)2 −K(1− r0)
) . (12)

The perturbing vector is generated by drawing all the elements

except two from a standard normal distribution, i.e., N (0, 1).
The remaining two elements are obtained by solving the set

of linear equations (11) and (12). The perturbing vector is

adopted if it meets the inequality constraints in (11) and the

resulting degree distributions satisfy the stability condition,

otherwise a new perturbing vector is generated. The perturbed

variable node degree distribution replaces the current one if

the resulting degree distributions are admissible, otherwise it

is dismissed and a new perturbation is performed. The process

is stopped if no new admissible degree distributions can be

found after a predetermined number of perturbations.

Remark: Although we have assumed a singleton distribution

for the check nodes, this constraint can be relaxed by adding

a separate perturbing vector. In this case, both the check

node and the variable node degree distributions are perturbed

jointly where the constraints on the perturbing vectors should

be changed accordingly. Note that the proposed optimization

is not limited to a specific modulation, however, in order to

exploit the symmetry property of the LLRs in the computa-

tion of (7), the employed constellation should be symmetric

with respect to origin and the sequences of bits assigned to

two symmetric points in the constellation should be flipped

versions of one another.
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V. EXAMPLES OF LDPC CODES OVER GICS

In this section, we investigate the performance of irregular

LDPC codes adopted for transmission over two-user GICs

implementing the HK coding/decoding strategy. We restrict

our attention to the case of fixed channel gains and finite signal

constellations. A range of examples for different interference

levels employing BPSK and QPSK with Gray coding are

studied. In all the instances, code optimization is performed

for symmetric and asymmetric rate pairs with the goal of

sum rate maximization where the rate increments are along

a straight line in the rate region. We select a variable node

degree distribution with a maximum degree of 50. Moti-

vated by [2], nonzero variable node degrees are selected as

{2, 3, 4, 9, 10, 19, 20, 49, 50}, although there is no guarantee

that this is the best choice. For the check nodes, we opt for a

singleton distribution, i.e., ρ(x) = xdc−1, which is kept fixed

throughout the code optimization process. The degree of the

check nodes (dc) is determined by optimizing the initial degree

distribution for a BI-AWGN channel utilizing the EXIT chart

analysis [26]. The performance of the optimized codes for

the two-user GIC is compared with that of the P2P codes

optimized for a BI-AWGN achieving the highest sum-rate,

which does not necessarily correspond to the initial degree

distributions. The degree distributions of the optimized codes

and the P2P codes are presented in the Appendix. Note that for

symmetric channels, the degree distributions corresponding to

the rate pair (R1, R2) can also be used to achieve (R2, R1)
by interchanging the employed degree distributions. Moreover,

for symmetric rate pairs (i.e., when R1 = R2) achieved

for symmetric channels, identical degree distributions (with

distinct code realizations) are adopted for the messages of both

users.

A. GIC with Strong Interference

Under strong interference, all the messages are public and

the capacity region is known. Although the capacity region is

determined by those of two MACs, the code design method

in [3] is not directly applicable since the channel gains are

not equal in general, and each message should be decodable

at each of the receivers. In the following, we study several

different scenarios.

Scenario I – Symmetric GIC with BPSK: For this instance,

a symmetric GIC is considered, whose capacity regions with

different inputs and achieved rate pairs are shown in Fig. 5.

The best achievable rate pairs obtained with P2P codes are also

depicted in Fig. 5. It can be observed that, for the optimized

codes, the achieved rate pairs are close to the boundary of the

capacity region and they outperform the P2P codes. Moreover,

the P2P codes and the optimized codes perform better than the

single user codes with non-naive TS.

Scenario II – Asymmetric GIC with BPSK: In this exam-

ple, an asymmetric GIC with channel parameters shown in

Fig. 6 is considered. Unlike the previous example, for both

symmetric and asymmetric rate pairs, two degree distributions

are optimized separately since the channels observed by each

receiver are different. It can be observed that, similar to the

previous example, the achieved rate pairs for the optimized
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Fig. 5. Scenario I: capacity regions and achieved rate pairs for a symmetric
GIC with strong interference. SNR = −6 dB, INR = −5 dB.

degree distributions outperform the ones obtained with the P2P

codes. Furthermore, all the achieved rate pairs with the P2P

and optimized codes are superior to the ones obtained via the

single user codes utilizing non-naive TS.
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Fig. 6. Scenario II: capacity regions and achieved rate pairs for an
asymmetric GIC with strong interference. SNR1 = −6 dB, INR1 =

−5.25 dB, SNR2 = −5.5 dB, INR2 = −4.75 dB.

Scenario III – Symmetric GIC with QPSK: The details

for this example are given in Fig. 7. The code optimization

is performed for both symmetric and asymmetric rate pairs.

Similar to the BPSK example, only one code is optimized

for both messages when symmetric rate pairs are considered.



0090-6778 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCOMM.2014.2385856, IEEE Transactions on Communications

9

We observe that the achieved rate pairs with optimized codes

outperform the ones obtained with P2P codes, and that both

optimized and P2P codes beat the non-naive TS results with

QPSK inputs. Furthermore, the optimized codes even outper-

form the non-naive TS results with Gaussian signaling.
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Fig. 7. Scenario III: capacity regions and achieved rate pairs for a symmetric
GIC with strong interference. SNR = −1.75 dB, INR = −0.25 dB,
∠ h11 = ∠ h22 =

π
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Scenario IV – Asymmetric GIC with QPSK: For this ex-

ample, an asymmetric channel is considered, and the corre-

sponding results are depicted in Fig. 8. Degree distributions

are optimized for both symmetric and asymmetric rate pairs.

Parallel to our previous findings, the optimized codes perform

better than the P2P codes both of which operating outside the

non-naive TS rate region. Specifically, all of the optimized

codes and one instance of the P2P codes outperform the single

user codes with Gaussian signaling with non-naive TS.

B. GIC with Weak Interference

Under weak interference, the interfering signal cannot be

decoded in its entirety, and hence sending all the messages

as public may not be optimal. As a result, unlike the case

of strong interference, power allocation should be addressed

prior to the code optimization. To simplify the process, an

optimization problem is solved to achieve the largest rate

region formulated as

max
α1,α2

Ru1 +Rw1 +Ru2 +Rw2

subject to
{

Ru1(α1), Rw1(α1), Ru2(α2), Rw2(α2)
}

∈ R1

0 ≤ αi ≤ 1, i = 1, 2,
Ru1 +Rw1 = Ru2 +Rw2 +∆R,

(13)

where Rui
and Rwi

denote the rates of the messages Ui and

Wi at the transmitter i, respectively. All the rates in (13)

should be contained in the HK sub-region R1 characterized

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
2
(bits/ch. use)

R
1
(b

it
s
/c

h
. 
u

s
e

)

 

 

Capacity Region (Gaussian)

Capacity Region (QPSK)

Non−naive TS (Gaussian)

Non−naive TS (QPSK)

Naive−TS (Gaussian)

Naive−TS (QPSK)

Achieved Point (P2P)

Achieved Point (Initial)

Achieved Point (Optimized)

Fig. 8. Scenario IV: capacity regions and achieved rate pairs for an
asymmetric GIC with strong interference. SNR1 = −1.75 dB, INR1 =

−0.25 dB, SNR2 = −1.25 dB, INR2 = 0.25 dB, ∠h11 =
π

4
, ∠h21 =

π

3
, ∠h12 = ∠h22 = 0.

through (2) computed for the employed constellations (BPSK

or QPSK with Gray coding), for which no time sharing

is utilized and the private message and the public message

of each transmitter is combined through addition. The last

constraint in (13) is added to simplify the optimization process

where ∆R is an arbitrary value also employed and kept fixed

during the code optimization.

Scenario V – Symmetric GIC with BPSK: In this example, a

symmetric GIC is considered with channel parameters given in

Fig. 9. The HK ARR is characterized for BPSK and Gaussian

signaling. The obtained ARRs are outerbounded utilizing the

results of [17] as shown in the figure. The power allocation

is performed for ∆R = 0, ∆R = ±0.05, and ∆R = ±0.15.

For the rate increments during the code optimization, we adopt
Rui

Rwi

, i = 1, 2, obtained from the power allocation optimization

results. Fig. 9 clearly shows that for both symmetric and

asymmetric rate pairs the optimized codes are superior to the

P2P optimal codes. In addition both P2P and optimized codes

beat the naive TS scheme, however, they do not exceed the

boundary of the non-naive TS region.

Scenario VI – Symmetric GIC with QPSK: In this example,

we consider a symmetric GIC with channel parameters given

in Fig. 10. The power allocation optimization is performed for

∆R = 0, ∆R = ±0.3, and ∆R = ±0.4. It can be observed

that, similar to the previous example, the optimized codes beat

the P2P codes, both of which outperforming the naive TS

rate region. Furthermore, for the asymmetric rate pairs, all the

optimized codes and some of P2P codes outperform the non-

naive TS rate region.

C. Summary of Results

We now summarize the results obtained in the above ex-

amples for GICs with strong and weak interference levels.
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Fig. 9. Scenario V: rate regions and achieved rate pairs for a symmetric GIC
with weak interference. SNR = −4.01 dB, INR = −5.01 dB.

Under strong interference, we see that the optimized codes

and the P2P codes outperform both naive TS and non-naive

TS schemes. Moreover, the optimized codes consistently im-

prove upon the P2P codes. For all instances with QPSK, the

optimized codes also beat non-naive TS scheme for Gaussian

signaling, which is not achieved with BPSK. Under weak

interference, similar to the case of strong interference, all

the optimized codes offer significantly better performance

compared to the off-the-shelf P2P codes. In addition, the

optimized codes and the P2P codes beat the naive TS schemes

for QPSK and Gaussian inputs. Furthermore, the performance

of some of the optimized codes is shown to be superior to the

non-naive TS results.

We also comment on the results of a recent paper [9] which

designs LDPC codes for a symmetric GIC example with weak

interference. Considering the method employed, the following

distinctions are observed compared with our approach in this

paper. First, [9] adopts no superposition at the transmitters,

i.e., messages of users are not split into distinct parts. Second,

it exploits soft interference cancellation wherein the adopted

decoder aims to decode the interfering signal as well as the

desired signal to reduce the effect of interference. Third,

it employs density evolution on the factor graphs assuming

the no-interleaver-hypothesis [3]. This assumption is only

valid when identical degree distributions are utilized for both

codes, and not applicable to the general case where degree

distributions of messages are distinct.

VI. FINITE BLOCK LENGTH CODE SIMULATIONS

A. Random Constructions

In this section, we evaluate the performance of the opti-

mized degree distributions through finite block length code

simulations. Parity check matrices are obtained with tools

Fig. 10. Scenario VI : rate regions and achieved rate pairs for a GIC with
weak interference. SNR = 3 dB, INR = 2.5 dB, ∠h11 = ∠h22 =
π

4
,∠h21 = ∠h12 =

π

3
.

in [28] where most of the length-4 cycles are removed. For

the symmetric scenarios, where identical degree distributions

are employed at both transmitters, different realizations are

utilized in the simulation. The code block lengths are picked

as 50k and the maximum number of decoding iterations is set

to 500. Fig. 11 shows the decoding results at receiver 1, where

for clarity of the presentation we only show the results of the

public message or the private message with the worst error

rates (i.e., the bottleneck), instead of giving the results for

all the messages. Considering a bit error rate (BER) of 10−5

as reliable transmission, it can be observed that the decoding

results for BPSK and QPSK scenarios are within 0.33 dB and

0.92 dB of the decoding thresholds computed earlier.

B. Algebraic Constructions

We observe that for random constructions the decoding

behavior is close to the asymptotic results for large block

lengths. However, in practice, LDPC codes with moderate

block lengths (≈ 1k) may also be adopted. In this case, a

drawback of random designs is the presence of short cycles

in the graph which may degrade the decoding performance

and may lead to error floors for high SNRs. To remedy

this problem, variants of structured LDPC codes have been

proposed and studied in the literature [29], [30], where codes

are optimized for different parameters, e.g., girth, stopping set,

trapping set, minimum distance. Protograph LDPC codes are

shown to perform well compared to the other approaches for

P2P channels. As the name suggests, the design of these codes

is based on a lifted graph from a so-called base graph. In [31],

protograph LDPC codes are optimized via algebraic designs

utilizing voltage graphs and non-abelian groups, and superior

performance is observed compared to the previous designs. In

the following, we consider a GIC with strong interference and
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Fig. 11. Finite block length decoding results for specific LDPC codes with
random constructions.

optimize the degree distributions using moderate code block

lengths, by employing the systematic approach of [31].

For code optimization, we consider an asymmetric GIC with

SNR1 = −1 dB, INR1 = −0.25 dB, SNR2 = −1.5 dB, and

INR2 = −0.75 utilizing BPSK with real channel gains. We

employ a base matrix with fixed dimensions of 3× 5 for both

messages. At each iteration, the degree distributions are per-

turbed by drawing the elements of the base matrix randomly

from the set {0, 1}. Unlike the previous examples, since the

dimension of the base matrix does not change throughout

the optimization process, we opt for decreasing SNRi and

INRi at each iteration keeping the signal to interference ratio

fixed. The resulting optimized degree distributions λ(x) =
0.3077x + 0.6923x2 and ρ(x) = 0.6154x3 + 0.3846x4 are

admissible for the asymmetric GIC with channel parame-

ters SNR1 = −2.15 dB, INR1 = −1.4 dB, SNR2 =
−2.65 dB, and INR2 = −1.9. We design the structured

codes for block lengths N = 1015 and 1525 utilizing non-

abelian groups. A non-abelian group of order m = pq is

characterized by (p, q, s) where q and p are prime numbers,

q divides p − 1, and sq ≡ 1 (mod p). The non-abelian

groups chosen for N = 1015 and N = 1525 are (29,7,7)

and (61,5,9), respectively. Fig. 12 shows the decoding results

for the resulting random and structured constructions. It is

observed that for N = 1015, error floors occur at 10−4

and 4 × 10−5 for random constructions with girths 4 and 6,

respectively. On the other hand, an error floor occurs around

10−6 for the structured code with girth 8. For N = 1525,

error floors occur at around 2×10−6 for random constructions

with girths 4 and 6, however, no error floor is observed for

the structured code with girth 12 all the way down to 10−9

BER. We also considered the performance of the employed

structured codes as a function of the SNRs and INRs at BER

10−5 (considered as reliable transmission) and observed that

the achieved rate pairs outperform the naive and non-naive TS

region for N = 1015 and N = 1525, respectively.

Fig. 12. Decoding results of structured vs. random constructions.

VII. CONCLUSIONS

In this paper, the Han-Kobayashi coding strategy is imple-

mented for two-user Gaussian interference channels. Fixed

channel gains are considered and finite constellations are

employed for transmission. In order to analyze the behavior of

the decoder, a symmetry property is proved for the exchanged

LLRs under joint decoding. Moreover, the stability conditions

are derived for the degree distributions of the private and

public messages under strong and weak interference levels.

A code optimization method based on a random perturbation

is proposed utilizing a specific instance of differential evo-

lution. Performance of the explicit and implementable LDPC

codes (as opposed to information theoretic random codes) are

examined through various examples, and promising results

are obtained for different scenarios, e.g., strong and weak

interference, symmetric and asymmetric rate pairs. Under

strong interference, capacity approaching codes are designed

which beat even the non-naive TS rate region with Gaussian

signaling. Under weak interference, it is observed that the

optimized codes operate outside the naive TS rate region

(with Gaussian signaling) and for some instances outperform

the non-naive TS region. We also note that the designed

codes improve consistently upon the codes optimized for P2P

channels (used with the same encoding/decoding procedure).

Furthermore, simulation results are provided using large block

length codes picked from the designed LDPC code ensembles

depicting a performance near the predicted limits, and also

using random and structured code constructions for small

block lengths (on the order of 1k bits), demonstrating that the

structured codes are superior to the random designs at high

SNRs when the block lengths are decreased.
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APPENDIX

DEGREE DISTRIBUTIONS OF THE OPTIMIZED AND P2P CODES EMPLOYED IN SCENARIOS I-VI

TABLE I
DEGREE DISTRIBUTIONS FOR SCENARIO I.

Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P2P W1(W2) 0.234 5 0.2790 0.1898 0.1271 0.0679 0.1133 0.0895 0.0093 0.0838 0.0403

Opt. W1(W2) 0.26 5 0.2695 0.3292 0.0050 0.1281 0.0246 0.0780 0.0136 0.1428 0.0092

P
2
P

{

W1 0.211 5 0.2845 0.1207 0.1863 0.0539 0.1322 0.0146 0.0091 0.0417 0.1570

W2 0.244 5 0.2691 0.2724 0.0219 0.2258 0.0320 0.0432 0.0141 0.0676 0.0539

O
p
t.

{

W1 0.237 5 0.3198 0.0985 0.2097 0.0400 0.0698 0.0037 0.0057 0.0683 0.1845

W2 0.274 5 0.2884 0.2563 0.0703 0.0890 0.1329 0.0467 0.0060 0.0394 0.0710

P
2
P

{

W1 0.201 5 0.2717 0.1798 0.1179 0.1454 0.0063 0.0557 0.0273 0.0807 0.1152

W2 0.251 5 0.2897 0.1963 0.1024 0.2137 0.0066 0.0388 0.0549 0.0232 0.0744

O
p
t.

{

W1 0.227 5 0.2988 0.1951 0.0890 0.0962 0.0415 0.0420 0.0077 0.1049 0.1248

W2 0.277 5 0.2935 0.2555 0.0486 0.1187 0.1137 0.1090 0.0336 0.0124 0.0150

P
2
P

{

W1 0.172 4 0.3494 0.2303 0.1019 0.1463 0.0380 0.0642 0.0043 0.0482 0.0174

W2 0.272 5 0.2875 0.2117 0.1342 0.0930 0.0707 0.0610 0.1129 0.0267 0.0023

O
p
t.

{

W1 0.18 4 0.2936 0.3264 0.1352 0.0012 0.1076 0.0332 0.0257 0.0596 0.0175

W2 0.28 5 0.2957 0.2261 0.1041 0.0809 0.1319 0.0199 0.0840 0.0393 0.0181

P
2
P

{

W1 0.125 4 0.3321 0.2067 0.1087 0.1679 0.0120 0.0014 0.0059 0.0801 0.0852

W2 0.275 5 0.2864 0.2289 0.1014 0.1580 0.0746 0.0155 0.0823 0.0041 0.0488

O
p
t.

{

W1 0.131 4 0.3715 0.1972 0.0594 0.1000 0.0147 0.0320 0.0840 0.0716 0.0696

W2 0.281 5 0.3088 0.2130 0.0785 0.1950 0.0657 0.0249 0.0440 0.0296 0.0405

TABLE II
DEGREE DISTRIBUTIONS FOR SCENARIO II.

Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P
2
P

{

W1 0.272 5 0.2875 0.2117 0.1342 0.0930 0.0707 0.0610 0.1129 0.0267 0.0023

W2 0.172 4 0.3494 0.2303 0.1019 0.1463 0.0380 0.0642 0.0043 0.0482 0.0174

O
p
t.

{

W1 0.282 5 0.3188 0.1587 0.1549 0.0567 0.1369 0.0424 0.0903 0.0274 0.0139

W2 0.182 4 0.3708 0.1025 0.2918 0.0147 0.0645 0.0167 0.0445 0.0453 0.0492

P
2
P

{

W1 0.268 5 0.2948 0.2026 0.1153 0.1107 0.0959 0.0188 0.1104 0.0399 0.0116

W2 0.218 5 0.2823 0.1020 0.2457 0.0393 0.0500 0.0870 0.0457 0.0234 0.1246

O
p
t.

{

W1 0.278 5 0.3106 0.1901 0.1065 0.1691 0.0809 0.0337 0.0297 0.0033 0.0761

W2 0.228 4 0.3815 0.2999 0.0280 0.1453 0.0719 0.0340 0.0074 0.0093 0.0227

P2P W1(W2) 0.234 5 0.2790 0.1898 0.1271 0.0679 0.1133 0.0895 0.0093 0.0838 0.0403

O
p
t.

{

W1 0.258 5 0.3007 0.1981 0.1377 0.0228 0.0607 0.0291 0.1192 0.0963 0.0354

W2 0.258 5 0.3282 0.1432 0.1499 0.0567 0.0132 0.1182 0.0856 0.0902 0.0148

P
2
P

{

W1 0.202 5 0.2680 0.1786 0.1434 0.0359 0.0667 0.1314 0.0040 0.0141 0.1579

W2 0.252 5 0.2799 0.2054 0.1315 0.0421 0.1286 0.1237 0.0078 0.0733 0.0077

O
p
t.

{

W1 0.226 4 0.4126 0.2658 0.0247 0.0933 0.0754 0.0303 0.0176 0.0170 0.0633

W2 0.283 5 0.3066 0.2792 0.0384 0.0047 0.0777 0.2256 0.0485 0.0103 0.0090

P
2
P

{

W1 0.186 4 0.3501 0.2414 0.1135 0.0614 0.1191 0.0078 0.0648 0.0089 0.0330

W2 0.290 5 0.2954 0.2212 0.1310 0.1526 0.0311 0.0702 0.0592 0.0376 0.0017

O
p
t.

{

W1 0.198 4 0.4218 0.1239 0.1579 0.1236 0.0169 0.0314 0.0191 0.0671 0.0383

W2 0.304 5 0.3269 0.1697 0.1583 0.1164 0.1081 0.0261 0.0264 0.0335 0.0346

P
2
P

{

W1 0.134 4 0.3308 0.1876 0.1603 0.1012 0.0377 0.0450 0.0179 0.0292 0.0903

W2 0.295 5 0.2816 0.2614 0.1105 0.1229 0.0776 0.0622 0.0598 0.0064 0.0176

O
p
t.

{

W1 0.14 4 0.3283 0.1667 0.2039 0.0596 0.0285 0.0612 0.1450 0.0048 0.0020

W2 0.307 5 0.3146 0.2326 0.0770 0.2500 0.0139 0.0701 0.0289 0.0031 0.0098

TABLE III
DEGREE DISTRIBUTIONS FOR SCENARIO III.

Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P2P W1(W2) 0.302 6 0.2477 0.1277 0.1869 0.1308 0.0093 0.0537 0.0811 0.0633 0.0995

Opt. W1(W2) 0.331 6 0.2535 0.2346 0.0814 0.0950 0.0555 0.0287 0.0392 0.0152 0.1969

P
2
P

{

W1 0.245 5 0.2945 0.1266 0.2140 0.0621 0.0478 0.0706 0.0951 0.0497 0.0396

W2 0.323 6 0.2467 0.2076 0.0838 0.1042 0.1534 0.0084 0.0480 0.0192 0.1287

O
p
t.

{

W1 0.298 5 0.3413 0.1503 0.2040 0.0167 0.0473 0.0206 0.0376 0.0383 0.1439

W2 0.349 6 0.2758 0.1717 0.1256 0.1056 0.1292 0.0116 0.0184 0.0889 0.0732

P
2
P

{

W1 0.23 5 0.2816 0.1623 0.1576 0.1525 0.0045 0.0816 0.0164 0.1408 0.0027

W2 0.33 6 0.2148 0.3127 0.0166 0.1485 0.0877 0.0936 0.0077 0.0828 0.0356

O
p
t.

{

W1 0.256 5 0.2134 0.4389 0.0045 0.0357 0.0315 0.0399 0.0179 0.1086 0.1096

W2 0.356 6 0.2643 0.2181 0.0876 0.0881 0.1242 0.1050 0.0620 0.0120 0.0387
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TABLE IV
DEGREE DISTRIBUTIONS FOR SCENARIO IV.

Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P
2
P

{

W1 0.345 6 0.2510 0.2298 0.0660 0.2137 0.0370 0.0624 0.0768 0.0076 0.0557

W2 0.245 5 0.2945 0.1266 0.2140 0.0621 0.0478 0.0706 0.0951 0.0497 0.0396
O

p
t.

{

W1 0.357 6 0.2605 0.2418 0.0513 0.1876 0.0752 0.0902 0.0107 0.0812 0.0015

W2 0.257 5 0.3307 0.1128 0.1725 0.0477 0.0847 0.0977 0.0304 0.0608 0.0627

P
2
P

{

W1 0.33 6 0.2148 0.3127 0.0166 0.1485 0.0877 0.0936 0.0077 0.0828 0.0356

W2 0.302 6 0.2477 0.1277 0.1869 0.1308 0.0093 0.0537 0.0811 0.0633 0.0995

O
p
t.

{

W1 0.349 6 0.2607 0.2043 0.1043 0.1252 0.1039 0.0325 0.0685 0.0712 0.0294

W2 0.321 6 0.2852 0.1184 0.1285 0.1856 0.0190 0.0723 0.0367 0.0997 0.0546

P
2
P

{

W1 0.263 5 0.2940 0.1676 0.1669 0.1030 0.0940 0.0463 0.0290 0.0679 0.0313

W2 0.316 6 0.2345 0.1804 0.1545 0.0309 0.1644 0.0002 0.1018 0.0522 0.0811

O
p
t.

{

W1 0.305 5 0.3028 0.3261 0.0418 0.0147 0.0533 0.0808 0.0787 0.0984 0.0034

W2 0.366 6 0.2840 0.2279 0.0762 0.1058 0.0500 0.0616 0.0660 0.0675 0.0610

P
2
P

{

W1 0.24 5 0.2701 0.2186 0.1115 0.0852 0.1123 0.0178 0.0665 0.0638 0.0542

W2 0.33 6 0.2148 0.3127 0.0166 0.1485 0.0877 0.0936 0.0077 0.0828 0.0356

O
p
t.

{

W1 0.294 5 0.3339 0.2518 0.0404 0.0393 0.0601 0.0852 0.1227 0.0434 0.0232

W2 0.379 6 0.2797 0.3078 0.0062 0.0965 0.0588 0.0649 0.0219 0.0247 0.1395

P
2
P

{

W1 0.219 5 0.2575 0.2490 0.0619 0.1320 0.0768 0.0586 0.0037 0.0494 0.1111

W2 0.36 6 0.2511 0.2213 0.1185 0.1178 0.0940 0.0334 0.1323 0.0118 0.0198

O
p
t.

{

W1 0.262 5 0.3020 0.2271 0.1038 0.0633 0.0208 0.0755 0.0317 0.0433 0.1325

W2 0.383 6 0.2851 0.1801 0.1842 0.0370 0.1036 0.0256 0.0660 0.0990 0.0194

TABLE V
DEGREE DISTRIBUTIONS FOR SCENARIO V.

α1, α2 Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P
2
P

{

α1 = 0.36 U1(U2) 0.132 4 0.3315 0.2088 0.1273 0.0790 0.0590 0.0235 0.0508 0.0099 0.1102

α2 = 0.36 W1(W2) 0.149 4 0.3613 0.0793 0.2874 0.0251 0.0504 0.0388 0.0596 0.0580 0.0401

O
p
t.

{

α1 = 0.36 U1(U2) 0.142 4 0.3634 0.1674 0.1106 0.0972 0.1013 0.0531 0.0075 0.0628 0.0367

α2 = 0.36 W1(W2) 0.161 4 0.3609 0.2671 0.0031 0.0721 0.1386 0.0504 0.0317 0.0325 0.0436

P
2
P

{

α1 = 0.5 U1 0.224 5 0.2659 0.2455 0.0512 0.1661 0.0542 0.0203 0.0415 0.0546 0.1007

α2 = 0 W1 0.136 4 0.3488 0.1237 0.2267 0.0161 0.0912 0.0299 0.0422 0.0971 0.0243

W2 0.209 5 0.2386 0.2859 0.0504 0.0920 0.0892 0.0326 0.0176 0.1183 0.0754

O
p
t.

{

α1 = 0.5 U1 0.229 5 0.2881 0.1978 0.0867 0.1136 0.0835 0.0679 0.0021 0.0953 0.0650

α2 = 0 W1 0.14 4 0.3535 0.2281 0.0474 0.1203 0.0706 0.0037 0.0628 0.0283 0.0853

W2 0.217 4 0.3835 0.2263 0.1377 0.0308 0.0711 0.0898 0.0365 0.0097 0.0146

P
2
P

{

α1 = 0.48 U1 0.172 4 0.3494 0.2303 0.1019 0.1463 0.0380 0.0642 0.0043 0.0482 0.0174

α2 = 0.35 W1 0.124 4 0.3386 0.1606 0.1633 0.1308 0.0293 0.0175 0.0040 0.1143 0.0416

U2 0.112 4 0.3300 0.1874 0.1410 0.0020 0.1268 0.0288 0.0234 0.0481 0.1125

W2 0.135 4 0.3400 0.2117 0.1038 0.0594 0.0962 0.0443 0.0348 0.0932 0.0166

O
p
t.

{

α1 = 0.48 U1 0.178 4 0.3814 0.1620 0.1543 0.0896 0.0321 0.0261 0.1088 0.0220 0.0237

α2 = 0.35 W1 0.129 4 0.3396 0.2320 0.0639 0.0584 0.1261 0.0294 0.0065 0.0539 0.0902

U2 0.117 4 0.3525 0.1999 0.0801 0.0610 0.0203 0.1622 0.0145 0.0085 0.1010

W2 0.141 4 0.3359 0.2870 0.0113 0.1037 0.0633 0.0624 0.0216 0.0790 0.0358

TABLE VI
DEGREE DISTRIBUTIONS FOR SCENARIO VI.

α1, α2 Msg. R dc λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50

P
2
P

{

α1 = 0.15 U1(U2) 0.119 4 0.3270 0.2106 0.1170 0.0227 0.1339 0.0104 0.0259 0.0126 0.1399

α2 = 0.15 W1(W2) 0.316 6 0.2345 0.1804 0.1545 0.0309 0.1644 0.0002 0.1018 0.0522 0.0811

O
p
t.

{

α1 = 0.15 U1(U2) 0.143 4 0.3682 0.1303 0.1657 0.0517 0.1055 0.0868 0.0021 0.0358 0.0539

α2 = 0.15 W1(W2) 0.377 6 0.3253 0.2005 0.0835 0.0414 0.0536 0.0125 0.0273 0.1647 0.0912

P
2
P

{

α1 = 0.51 U1 0.439 7 0.2110 0.3124 0.0295 0.2368 0.0272 0.1213 0.0336 0.0126 0.0156

α2 = 0 W1 0.196 4 0.3650 0.2180 0.1211 0.0224 0.2121 0.0154 0.0020 0.0404 0.0036

W2 0.335 6 0.2310 0.2712 0.0518 0.0337 0.2035 0.0197 0.0942 0.0732 0.0217

O
p
t.

{

α1 = 0.51 U1 0.475 7 0.2552 0.2896 0.0379 0.0662 0.2739 0.0364 0.0263 0.0020 0.0125

α2 = 0 W1 0.212 4 0.3893 0.2269 0.1236 0.0603 0.0323 0.0486 0.0397 0.0316 0.0477

W2 0.387 6 0.3448 0.0318 0.2799 0.0122 0.0958 0.0023 0.1080 0.0455 0.0797

P
2
P

{

α1 = 0.5 U1 0.448 8 0.2019 0.2004 0.1019 0.0789 0.1366 0.1071 0.0559 0.0703 0.0470

α2 = 0 W1 0.252 5 0.2799 0.2054 0.1315 0.0421 0.1286 0.1237 0.0078 0.0733 0.0077

W2 0.300 6 0.2365 0.2023 0.0902 0.1781 0.0009 0.0784 0.0506 0.1516 0.0114

O
p
t.

{

α1 = 0.5 U1 0.459 7 0.1867 0.3871 0.0485 0.0959 0.1084 0.1263 0.0127 0.0038 0.0306

α2 = 0 W1 0.258 5 0.2609 0.3292 0.0059 0.0491 0.1482 0.0740 0.0356 0.0490 0.0481

W2 0.317 5 0.3436 0.1022 0.2821 0.0281 0.0774 0.0531 0.0183 0.0113 0.0839
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