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1. Introduction
Lyapunov’s second method is a standard technique that allows estimation of the qualitative behavior of
differential equations and stability analysis when the behavior of the apparent solution of the comparison
system is known, without solving the system in nonlinear systems. This method indicates that the system is
stable if the appropriate Lyapunov function is found. In this sense, this method is sufficient, because even if
the Lyapunov function cannot be found, a suitable candidate showing the stability of the system can still be
determined.

In some status, a system in theory may be stable or asymptotically stable, but it is unstable in practice
essentially because the stable domain or the domain of attraction is not large enough to authorize the desired
deflection to cancel out [26]. Conversely, occasionally the desired state of a system may be mathematically
unstable and nevertheless the system may pendulate enough near this state in which its performance is
admissible. In many problems of practical significance one is not only interested in the qualitative data provided
by Lyapunov stability results, but also in quantitative data concerning the system’s attitude such as prediction
of trajectory bounds. In the light of all this information, practical stability concepts [12] are more influential.
Accordingly, the research of fuzzy differential systems [6, 7],[2, 10, 13, 14, 24] is initiated and sufficient conditions,
in terms of Lyapunov-like functions [15, 16] are provided for the practical stability, which consolidate Lyapunov’s
second method.

Fuzzy differential systems are robust tools for modeling uncertainty and for processing uncertain or
nominative data in mathematical models, they have been applied to a large diversity of real problems, for
example, quantum optics, gravity [3], population models, engineering applications [4] and some other models.

The concept of the fuzzy derivative was first introduced by Chang and Zadeh [1, 30]. The use of fuzzy
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differential equations is a natural way to model dynamic systems under possibilistic uncertainty. The concept of
differential equations in a fuzzy structure was built by Kaleva [6, 7] and several authors have produced a large
diversity of results in both the theoretical and applied fields [4, 11, 20, 28]. A diversity of exact, approximate,
and entirely numerical methods are existing to discover the solution of a fuzzy initial value problem.

It was put forth that the fuzzy differential equations has specific disadvantages because the solution
owns the feature that the diameter is nondecreasing as time increases. It was put forth that this course of the
solutions is due to the fuzzification of the derivative used in the formulation of the fuzzy differential equations.
As a result alternative formulations have been suggested.

The mathematical theory of control commence from that is interested in the basis underlying the analysis
and design of control systems [18, 19]. They have been applied to a large diversity of real problems, such as in
electronics [4], climate modeling, machine design [4] and neural networks [23] The fundamental problems that
emerge for fuzzy control problems are: the existence and uniqueness of the solution involving fuzzy control, the
accessibility and controllability of fuzzy control systems[21, 22].

It is studied about the stability of the fuzzy control differential equation in paper [5, 10, 20], about
practical stability of the fuzzy differential equation in paper [8, 26, 28], about stability of perturbed system
related to unperturbed system in paper [25, 27]. In the light of all these studies, Lyapunov’s second method
is applied on perturbed fuzzy control system related to unperturbed fuzzy control system and its practical
stability was studied along with other stability features in this paper. With this approach, we aimed to expand
the family of practical stable perturbed system because while the perturb system is not stable, it can be stable
relative to the unperturbed system.

The paper is organized as follows: In Section 1, we present definitions and necessary background material.
In Section 2, we introduce perturbed and unperturbed fuzzy control system, explain stability definitions and
main comparison theorem. In Section 3, we present stability properties of fuzzy control differential equation by
comparison differential equation. In Section 4, we clarify practical stability properties of perturbed fuzzy control
differential equation with respect to the unperturbed fuzzy control differential equation. In Section 5, we have
a comparison result in which the practical stability properties of null solution of the comparison system imply
the corresponding practical stability properties of perturbed fuzzy control differential equation with respect to
the unperturbed fuzzy control differential equation.

2. Preliminaries

In this section, we give the basic definitions of fuzzy algebra [10]. Let Kc(R
n) be the collection of all nonempty

compact, convex subsets of Rn . If α, β ∈ R and A,B ∈ Kc(R
n) , then

α(A+B) = αA+ αB,α(βA) = (αβ)A, 1A = A. (2.1)

If α, β ≥ 0 , then we have the equality (α+ β)A = αA+ βA .
Define the Hausdorff metric as follows:

D [A,B] = max

[
sup
x∈B

d(x,A), sup
y∈A

d(y,B)

]
(2.2)

where d(x,A) = inf [d(x, y) : y ∈ A] , and A,B are bounded sets in Rn . The metric space (Kc(R
n), D) is a

complete metric space.
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Let D [A,B] be the Hausdorff metric between the sets A,B,C ∈ Kc(R
n) . Then we define the following

properties:

D[A+ C,B + C] = D[A,B] (2.3)

D[A,B] = D[B,A] (2.4)

D[λA, λB] = λD[A,B] (2.5)

D[A,B] ≤ D[A,C] +D[C,B] (2.6)

for all A,B,C ∈ Kc(R
n) and λ ∈ R+ . It is known that (Kc(R

n), D) is complete, seperable and locally
compact.

Define En = {x : Rn → [0, 1] such that x(t) satisfies (i)-(iv) stated below} :

(i) x maps Rn onto I = [0, 1] ,
(ii) [x]a is compact subset of Rn for all α ∈ I where a− level set xa = [x]a = {z ∈ Rn | x(z) ≥ α} ,
(iii) [x]0 is bounded subset of Rn ,
(iv) x is fuzzy convex, that is, for 0 ≤ λ ≤ 1

x(λz1 + (1− λ)z2) ≥ min{x(z1), x(z2)} λ ∈ [0, 1]

We define the diameter of x as diam[x]a = x(α)−x(a) . Let us denote by D0[x1, x2] = sup{D([x1]
a, [x2]

a) :

0 ≤ a ≤ 1} the distance between x1 and x2 in En , where D([x1]
a, [x2]

a) is Hausdorff distance between two
set [x1]

a, [x2]
a of Kc(R

n) . Then (En, D0) is complete space. Some properties of metric D0 are as follows:

D0[x1 + x3, x2 + x3] = D0[x1, x2] , (2.7)

D0[λx1, λx2] = |λ|D0[x1, x2] , (2.8)

D0[x1, x2] ≤ D0[x1, x3] +D0[x3, x2] (2.9)

for all x1, x2, x3 ∈ En and λ ∈ R . Let x1, x2 ∈ En , if there exists x3 ∈ En such that x1 = x2+x3 , then
x3 is called the H-difference of x1, x2 and it is denoted by x1 − x2 . Let us remark that x1 − x2 ̸= x1 + (−1)x2 .
Let us denote θn ∈ En the zero element of En as follows: θn(z) = 1 if z = 0 and θn(z) = 0 if z ̸= 0 , where 0

is the zero element of Rn .
We define the space of continuous fuzzy functions as

C([t0, T ], E
n) = {x : [t0, T ] → En | x is continuous}

which is complete metric space endowed with the following metric

D∗
0 [x1, x2] = sup

t∈[t0,T ]

D0[x1(t), x2(t)] for x1, x2 ∈ C([t0, T ], E
n).

In the following we recall some main concepts and properties of fuzzy Hukuhara differentiability for fuzzy
functions.
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Definition 2.1 [10] Let x : T → En and T ⊂ R be compact interval. We say that x is differentiable
at t ∈ T , if there exists a Hukuhara−derivative DHx(t) ∈ En , such that for all h > 0 sufficiently small,
Hukuhara−difference x(t+ h)− x(t), x(t)− x(t+ h) exist and limits

DHx = lim
h−→0+

x(t+ h)− x(t)

h
= lim

h−→0+

x(t)− x(t− h)

h
(2.10)

provided that there limits are exists.The limit by metric D0 , limh−→0+ D0[
x(t+h)−x(t)

h , DHx(t)] = 0 .
If x, y differentiable at t then DH(x+ y)(t) = DHx(t) +DHy(t) and DH (λx)(t)) = λDHx(t), λ ∈ R .

If x : T → En is differentiable then it is continuous.
Definition 2.2 [10]We say that a mapping x : T → En is strongly measurable if for all a ∈ [0, 1] the

set-valued mapping xa : T → PK(Rn) defined by xa(t) = [x(t)]a is (Lebesgue) measurable, when PK(Rn) is
endowed with the topology generated by Hausdorff metric D0 .

If x is strongly measurable, then it is measurable with respect to the topology generated by d that is
defined by

u ∈ En, {t | d(x(t), u) ≤ ε} = ∩
a∈[0,1]

{t | D0(xa(t), [u]
a) ≤ ε}

Definition 2.3 [10] Let x : T → En , Hukuhara integral of x over T , denoted
∫
T

x(t)dt is defined

levelwise by the equation

∫
T

x(t)dt

 =

∫
T

xa(t)dt =


∫
T

x̂(t)dt | x̂ : T → Rn is a measurable selection for xa.

 for all a ∈ [0, 1]

If x : T → En is strongly measurable and integrably bounded, then x is integrable, if it is continuous,
then is also integrable and for all t ∈ T the integral G(t) =

∫
[a,t]

x is differentiable and DHG(t) = x(t) .

If x : T → En is differentiable and assume that the derivative DHx is integrable over T. Then for each
s ∈ T , we have x(s) = x(a) +

∫
(a,s]

DHxdt .

If x, y : T → En are integrable, then the following properties of the integral are valid.

D0 [x (·) , y (·)] : T −→ R is integrable; (2.11)

D0

∫
T

x (t) dt,

∫
T

y (t) dt

 ≤
∫
T

D0 [x (t) , y (t)] dt; (2.12)

b∫
a

x (s) dt =

∫ c

a

x (s) ds+

∫ b

c

x (s) ds for a ≤ c ≤ b (2.13)

By using the Housdorff metric, it follows that for A ∈ En

D0 [A, θ] = ∥A∥ = sup ∥a∥
a∈A
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where θ is the zero element of Rn which is a one-point set.

3. Perturbed fuzzy control system related to unperturbed fuzzy control system

In fuzzy metric space En , let us consider the inital valued problems (IVP) of nonlinear fuzzy control differential
equations (NLFCDE’s) in [t0, T ] ;

DHx(t) = f(t, x(t), u(t)), x(t0) = x0 ∈ En, u(t0) = u0 ∈ Ep and t ∈ [t0, T ] t0 ≥ 0 (3.1)

the perturbed system of (3.1)

DHy(t) = F (t, y(t), u(t)), y(t0) = y0 ∈ En, u(t0) = u0 ∈ Ep and t ∈ [t0, T ] t0 ≥ 0 (3.2)

where f, F : [t0, T ]×En ×Ep → En and admissible control u(t) ∈ Ep . We have a special case of (3.2) that is
perturbation equation of (3.1) if F (t, y(t), u(t)) = f(t, y(t), u(t)) + R(t, y(t), u(t)) where R(t, y(t), u(t)) is the
perturbation term. The above assumptions imply the existence of trivial solutions of (3.1) and (3.2) through
(t0, x0, u0) and (t0, y0, u0) , respectively.

Thus the corresponding with the IVP for NLFCDEs of (3.1), (3.2) are the followings respectively.

x(t) = x0 +

T∫
t0

f(s, x(s), u(s))ds, t ∈ [t0, T ] , x0 ∈ En, u0 ∈ Ep (3.3)

y(t) = y0 +

T∫
t0

F (s, y(s), u(s)))ds, t ∈ [t0, T ] , x0 ∈ En, u0 ∈ Ep (3.4)

Definition 3.1 [20] Let u(t) ∈ Ep be an admissible fuzzy control, which means at moment t0 , we have
x(t0) = x(t0, x0, t0, u(t0)) = x0 ∈ En , for any x ∈ En exists t1 > t0 such that x(t1) = x(t0, x0, t1, u(t1)) = x

and the pair of fuzzy states (x0, x) ∈ En is called controllable by u(t) .
Before we can establish our comparison theorem and Lyapunov stability criteria we need to introduce the fol-
lowing definitions.

3.1. Stability criteria

We assume that NLFCDE in Equation (3.1) has the trivial solution, which means f(t, θn, u(t)) = θn .
Definition 3.1.1 [10] The trivial NLFCDE solution x(t) = x(t, t0, x0, u(t)) of Equation (3.1) through

(t0, x0) is said to be:
(S) stable by Lyapunov’s mean if: for each ε > 0 and t0 > 0 there exists a δ = δ(t0, ε) such that

D0[x0, θ
n] < δ implies D0[x(t), θ

n] < ε for t ≥ t0

(US) uniformly stable by Lyapunov’s mean if: if δ in (S) is independent of t0 ∈ R+ .
(AS) asymptotically stable by Lyapunov’s mean if: it is stable and lim

t→∞
D0[x(t), θ

n] = 0

(ES) exponentially stable by Lyapunov’s mean if: D0[x(t), θ
n] ≤ β(D0[x0, θ

n], t0) exp[−a(t− t0)] , t ≥ t0

where β(D0[., .], t0) : [0, 1]× R+ → R+ and a > 0
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(PS) practical stable by Lyapunov’s mean if: given (λ,A) with 0 < λ < A there exists a (λ,A) ≥ 0 such
that D0[x0, θ

n] < λ implies D0[x(t), θ
n] < A , t ≥ t0 for some t0 ∈ R+ .

(UPS) uniformly practical stable by Lyapunov’s mean if: (PS) holds for every t0 ∈ R+ .
(PQS) practically quasi stable by Lyapunov’s mean if: given (λ,B, T ) > 0 , 0 < λ < B and t0 ∈ R+

such that D0[x0, θ
n] < λ implies D0[x(t), θ

n] < B , t ≥ t0 + T .

Definition 3.1.2 [25] We assume that NLFCDE the solution y(t) = y(t, t0, y0, u(t)) of system (3.2)
through (t0, y0) for t ≥ t0

(SW ) stable with respect to the solution x(t) = x(t, t0, x0, u(t)) where x(t, t0, x0, u(t)) any solution of
system (3.1) for t ≥ t0 if and only if given any ε > 0 and t0 > 0 there exist a δ = δ(t0, ε) such that
D0[y0 − x0, θ

n] < δ implies D0[y(t)− x(t), θn] < ε for t ≥ t0 ,
(USW ) uniformly stable with respect to the solution x(t) = x(t, t0, x0, u(t)) if δ in (SW ) is independent

of t0 ∈ R+ .
(ASW ) asymptotically stable with respect to the solution x(t, t0, x0, u(t)) if (SW ) holds and there exists

γ(t0) > 0 such that lim
t→∞

D0[y(t)− x(t), θn] = 0 with

D0[y0 − x0, θ
n] < γ(t0)

(ESW ) exponentially stable with respect to the solution x(t, t0, x0, u(t)) if there exists an estimate such
that D0[y(t)− x(t), θn] ≤ D0[y0 − x0, θ

n] exp[−a(t− t0)] , for all a > 0

(PSW ) practical stable with respect to the solution x(t, t0, x0, u(t)) if given (λ,A) with 0 < λ < A there
exists a (λ,A) ≥ 0 such that D0[y0 − x0, θ

n] < λ implies D0[y(t)− x(t), θn] < A , t ≥ t0 for some t0 ∈ R+ .
(UPSW ) uniformly practical stable with respect to the solution x(t, t0, x0, u(t)) if (PSW ) holds for

every t0 ∈ R+ .
(PQSW ) practically quasi stable with respect to the solution x(t, t0, x0, u(t)) if given (λ,B, T ) > 0 with

0 < λ < B and t0 ∈ R+ such that D0[y0 − x0, θ
n] < λ implies D0[y(t)− x(t), θn] < B , t ≥ t0 + T for some

t0 ∈ R+ .
Definition 3.1.3 [10] A function φ(r) is said to belong to the class K if φ ∈ C[(0, ρ),R+], φ(0) = 0 ,

and φ(r) is strictly monotone increasing in r . It is said to belong to class κ∞ if ρ = ∞ and φ(r) → ∞ as
r → ∞ .

Definition 3.1.4 [10] For a real-valued function V (t, x(t), u(t)) ∈ C[R+ × En × Ep, En] we define the
Dini derivatives as follows:

D+V (t, x, u) ≡ lim
h→0+

sup
1

h
[V (t+ h, x+ hf(t, x, u), u(t))− V (t, x, u)]

D−V (t, x, u) ≡ lim
h→0−

inf
1

h
[V (t+ h, x+ hf(t, x, u), u(t))− V (t, x, u)]

for (t, x, u) ∈ R+ × En × Ep .
Definition 3.1.5 [25] For a real-valued function V ∈ C[R+ × En × Ep, En] we define the generalized

derivatives (Dini-like derivatives) as follows:

D+
∗ V (t, y − x, u) = lim

h→0+
sup

1

h
[V (t+ h, y − x+ h[F (t, x, u)− f(t, x, u)], u(t))− V (t, y − x, u)]
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D−
∗ V (t, y − x, u) = lim

h→0−
inf

1

h
[V (t+ h, y − x+ h[F (t, x, u)− f(t, x, u)], u(t))− V (t, y − x, u)]

for (t, y − x, u) ∈ R+ × En × Ep where y(t) = y(t, t0, y0, u(t)) is the solution of the system (3.2) and
x(t) = x(t, t0, x0, u(t)) is any solution of the system (3.1 ) for t ≥ t0 and some t0 ∈ R+ .

3.2. Comparison theorem

We consider comparison system to predict the stability properties of y(t, t0, y0, u(t)) solution of (3.2) with
respect to x(t, t0, x0, u(t)) any solution of the system (3.1).

Teorem 3.2.1 Assume that f , F : [t0, T ]× En × Ep → En and
i)

lim
h→0+

sup
1

h
[D0[y − x+ h(F (t, y, u)− f(t, x, u)), θn]−D0[y − x, θn]] ≤ G(t,D0[y − x, θn])

where G ∈ C[[t0, T ]× R+,R] ;
ii) r(t) = r(t, t0, z0) is maximal solution of the scalar differential equation exists on [t0, T ] ,

z′ = G(t, z), z(t0) = z0 ≥ 0 for t ≥ t0 (3.5)

Then if x(t) ve y(t) are solution of (3.1) and (3.2) through (t0, x0) and (t0, y0) respectively on [t0, T ] .

We have

D0[y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), θ
n] ≤ r(t, t0, z0) provided that D0[y0 − x0, θ

n] ≤ r0

Proof For small h > 0 the H-difference of x(t+h)−x(t), y(t+h)−y(t) exist. Define m(t) = D0[y−x, θn]

and we have for t ∈ [t0, T ]

m(t+ h)−m(t) = D0[y(t+ h)− x(t+ h), θn]−D0[y(t)− x(t), θn]

By using the triangular inequality for D0 , we obtain

D0[y(t+ h)− x(t+ h), θn] ≤ D0[y(t+ h)− x(t+ h), y(t)− x(t) + h(F (t, y(t), u(t))− f(t, x(t), u(t)))]

+D0[y(t)− x(t) + h(F (t, y(t), u(t))− f(t, x(t), u(t))), θn]

Hence, it follows that

m(t+ h)−m(t)

h
≤ 1

h
D0[y(t+ h)− x(t+ h)− y(t)− x(t), h(F (t, y(t), u(t))− f(t, x(t), u(t)))]

+
1

h
[D0[y(t)− x(t) + h(F (t, y(t), u(t))− f(t, x(t), u(t))), θn]−D0[y(t)− x(t), θn]]

since the properties of D0 and the fact that x(t) and y(t) are the solutions of (3.1) ve (3.2) respectively, we
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get

D+m(t) = lim sup
h→0+

m(t+ h)−m(t)

h
≤

lim sup
h→0+

D0[
y(t+ h)− x(t+ h)− [y(t)− x(t)]

h
, [F (t, y(t), u(t))− f(t, x(t), u(t))]]

+ lim sup
h→0+

1

h
[D0[y(t)− x(t) + h(F (t, y(t), u(t))− f(t, x(t), u(t))), θn]−D0[y(t)− x(t), θn]]

This implies that
D+m(t) ≤ G(t,D0[y − x, θn]) = G(t,m(t))

and by using the comparison result in Theorem 1.4.1 given in Lakshmikantham and Leela [5].Therefore, we
have

m(t) = D0[y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), θ
n] ≤ r(t, t0, z0) provided that D0[y0 − x0, θ

n] ≤ z0

Corollory 3.2.2 The function G(t, z) = 0 is admissible in Theorem 3.2.1 to yield the estimate
D0[y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), θ

n] ≤ D0[y0 − x0, θ
n] .

4. Stability criteria of fuzzy control differential equations

We assume that NLFCDE in Equation (3.1) has the trivial solution, which means f(t, θn, u(t)) = θn .
Teorem 4.1 Assume that f : [t0, T ]× Sρ ×Ep → En and where Sρ = [y − x ∈ En : D0[y − x, θn] < ρ]

i)

lim
h→0+

sup
1

h
[D0[x+ hf(t, x, u), θn]−D0[x, θ

n]] ≤ G(t,D0[x, θ
n]) (4.1)

ii) Let r(t) = r(t, t0, z0) be the maximal solution of the scalar differential equation

z′ = G(t, z), z(t0) = z0 ≥ 0 for t ≥ t0 and G(t, z) = 0 (4.2)

Then the stability properties of trivial solution of scalar differential equation imply the corresponding
stability properties of trivial solution of fuzzy differential equation (3.1) respectively.

Proof Let the trivial solution of (4.2) be stable. Then, given ϵ > 0 and t0 ∈ R+ , there exists a positive
δ = δ(t0, ϵ) with the property 0 ≤ w0 ≤ δ implies w(t, t0, w0) < ϵ , t ≥ t0 where w(t, t0, w0) is any solution
of scalar differential equation. We claim that with these ϵ, δ the trivial solution x(t) = 0 of is stable. If this
is false, there would exist a solution x(t) = x(t, t0, x0, u(t)) of (3.1) with D0[x0, θ

n] < δ and t1 > t0 such
that D0[x1, θ

n] = ϵ and D0[x, θ
n] ≤ ϵ < ρ , t0 ≤ t ≤ t1 . For [t0, t1] using condition (3.1), corollary 3.4.1-

(Lakshmikantham, V. and Mohapatra R.N., 2003, Theory of Fuzzy Differential Equations and Inclusions [3].)
yields the estimate D0[x, θ

n] ≤ r(t, t0, D0[x0, θ
n]) < ϵ proving the claim.

5. Practical stability of perturbed fuzzy control system related to unperturbed fuzzy control
system

Teorem 5.1 Assume that the following hold
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i) Let Lyapunov-like function V (t, x(t), u(t)) ∈ C(R+ × En × Ep, En) , | V (t, x, u1) − V (t, y, u2)

|≤ L(D0[x, y] + D0[u1, u2]) L > 0 bounded Lipschitz constant and for (t, x, u) ∈ R+ × Sρ × Ep where
Sρ = [y − x ∈ En : D0[y − x, θn] < ρ] such that

D+V (t, y − x, u) = lim
h→0+

sup
1

h
[V (t+ h, y − x+ h(F (t, y, u)− f(t, x, u)), u(t))− V (t, y − x, u)] ≤ 0 (5.1)

ii)Let V (t, y(t)− x(t), u(t)) ∈ C(R+ × En × Ep, En) and a, b ∈ κ,

b(D0[y(t, y, u(t))− x(t, x, u(t)), θn]) ≤ V (t, y(t)− x(t), u(t)) ≤ a(t,D0[y(t, y, u(t))− x(t, x, u(t)), θn]) (5.2)

Then y(t, t0, y0, u(t)) the solution of FCDE (3.2) with respect to x(t, t0, x0, u(t)) any solution of FCDE
(3.1) is practical stable for (3.1) for t ≥ t0 .

Proof Let us assume that given (λ,A) with 0 < λ < A . Then it is possible to find a b > 0 such that
a(t, λ) < b(A) . Practical stability holds such that

D0[y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), θ
n] < A provided that D0[y0 − x0] < λ (5.3)

If the fuzzy control differential equation (3.1) is not practically stable and then there would exist a solution of
fuzzy control differential equation y(t, t0, y0, u(t)) the solution of (3.2) with respect to x(t, t0, x0, u(t)) is any
solution of fuzzy control differential equation (3.1) for t ≥ t0 and exist t1 > t0 with D0[x0 − y0, θ

n] < λ

satisfiying
D0[y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), θ

n] = A t ∈ [t0, t1]

So that we have, because of (5.1) and (5.2) b(A) ≤ V (t1, y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), u(t)) for t1 > t0.

This means that D0[y(t1, t0, y0, u(t)) − x(t1, t0, x0, u(t)), θ
n] < ρ for t ∈ [t0, t1] and hence we get from the

assumptions (5.1) and Corollory 3.2.2, the estimate

V (t1, y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), u(t)) ≤ V (t0, y0 − x0, u(t)) t ≥ t0

We get

b(A) = b(D0[y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), θ
n])

≤ V (t1, y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), u(t))

≤ V (t0, y0 − x0, u(t)) ≤ a(t0, D0[y0 − x0, θ
n]) ≤ a(t0, λ) < b(A)

which contradicts. Hence (5.3) is valid and we have y(t, t0, y0, u(t)) the solution of (3.2) with respect to
x(t, t0, x0, u(t)) is practical stable. Since λ is now dependent of t0 , we have uniformly practically stability
y(t, t0, y0, u(t)) the solution of (3.2) with respect to x(t, t0, x0, u(t)) .

Teorem 5.2 Assume that following hold

i) Let V (t, x(t), u(t)) ∈ C(R+×En×Ep, En) | V (t, x, u1)−V (t, y, u2) |≤ L(D0[x, y]+D0[u1, u2]) L >

0 and for (t, x, u) ∈ R+ × Sρ × Ep and where Sρ = [y − x∈En : D0[y − x, θn] < ρ] such that
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D+V (t, y − x, u) = lim
h→0+

sup
1

h
[V (t+ h, y − x+ h(F (t, y, u)− f(t, x, u)), u(t))− V (t, y − x, u)] (5.4)

≤ −µV (t0, y0 − x0, u(t))

ii) Let V (t, y(t)− x(t), u(t)) ∈ C(R+ × Sρ × Ep, En)

b(D0[y(t)− x(t), θn]) ≤ V (t, y(t)− x(t), u(t))) ≤ a(t,D0[y(t)− x(t), θn]) a, b ∈ κ (5.5)

Then y(t, t0, y0, u(t)) the solution of FCDE (3.2) with respect to x(t, t0, x0, u(t)) any solution of FCDE
(3.1) is practically quasi stable for t ≥ t0 .

Proof It is clear from (5.4) that we have practical stability of y(t, t0, y0, u(t)) the solution of (3.2) with
respect to x(t, t0, x0, u(t)) any solution of the system (3.1) for t ≥ t0 . Hence taking B = ρ and designating
λ0 = λ0(t0, ρ) = λ > 0 , we have by Theorem 1.We have practical stabillity with this λ0 , practical stability
holds such that

D0[y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), θ
n] < ρ provided that D0[y0 − x0, θ

n] < λ for t ≥ t0 + T (5.6)

If the theorem is false, then there would exist a solution of y(t, t0, y0, u(t)) the solution of (3.2) with respect to
x(t, t0, x0, u(t)) for t1 > t0 + T and following status be provided; with D0[y0 − x0, θ

n] < λ satisfying

D0[y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), θ
n] = B t ∈ [t0 + T, t1]

Consequently, we get from assumption (5.4), the estimate

V [t, y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), u(t)] < V (t0, y0 − x0, u(t)) exp[−µ(t− t0)], t ≥ t0 + T (5.7)

Given B > 0 , we choose T = T (t0, B) = 1
µIn[

a(t0,λ0)
b(B) ] + 1 . Then we have from (5.4),(5.5),(5.6),(5.7), we get

b(D0[y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), θ
n]) ≤ V (t1, y(t, t0, y0, u(t))− x(t1, t0, x0, u(t)), u(t))

≤ V (t0, y0 − x0, u(t)) exp[−µ(t1 − t0)]

≤ a(t0, λ) exp[−µ(t1 − t0)]

< b(A)

This contradicton gives us practical stability of y(t, t0, y0, u(t)) the solution of (3.2) with respect to x(t, t0, x0, u(t))

any solution of the system (3.1) is quasi practically stable for t ≥ t0 . Since λ is now dependent of t0 , we have
uniformly practically stability y(t, t0, y0, u(t)) the solution of (3.2) with respect to x(t, t0, x0, u(t)) .

6. A comparison result in practical stability of fuzzy control differential equations

In this section, we have a useful comprasion theorem in practical stability of fuzzy control differential systems
via scalar differential equation and proof of this theorem.

Teorem 6.1 Assume that
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i) Let V (t, y(t) − x(t), u(t)) ∈ C(R+ × En × Ep, En) | V (t, x, u1) − V (t, y, u2) |≤ L(D0[x, y] +

D0[u1, u2]) L > 0 and for (t, x, u) ∈ R+ × Sρ × Ep and

b(D0[y(t)− x(t), θn]) ≤ V (t, y(t)− x(t), u(t))) ≤ a(t,D0[y(t)− x(t), θn]) a, b ∈ κ (6.1)

Dini derivatives of Lyapunov functions and comprasion of the scalar differential equation (6.2)

D+V (t, x− y, u) = lim
h→0+

sup
1

h
[V (t+ h, y − x+ h(F (t, y, u)− f(t, x, u)), u(t)]− V [t, y − x, u]] (6.2)

≤ g(t, V (t, y(t)− x(t)), g(t, V ) ∈ C[R2
+ ,R]

ii) Let r(t) = r(t, t0, z0) be the maximal solution of the scalar differential equation

z′ = g(t, z), z(t0) = z0 ≥ 0 for t ≥ t0 (6.3)

Then the practical stability properties of the comparison differential equation imply the corresponding
practical stability properties of y(t, t0, y0, u(t)) the solution of fuzzy control differential equation (3.2) with
respect to x(t, t0, x0, u(t)) any solution of the system (3.1) for t ≥ t0 .

Proof Suppose that comparison equation is practically stable, then for given any (λ,A) with 0 < λ < A

and there exists b = b(A) and b ∈ κ such that

z(t, t0, z0) < b(A) provided that ds[z0, 0] < λ, t ≥ t0 (6.4)

We claim that with this λ , practical stability holds such that

D0[y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), θ
n] < A provided that D0[y0 − x0, θ

n] < λ for t ≥ t0 (6.5)

If the theorem is false, then there would exist solution of fuzzy control differential equation; y(t, t0, y0, u(t)) the
solution of fuzzy control differential equation (3.2) with respect to x(t, t0, x0, u(t)) any solution of the system
(3.1) for t ≥ t0 exist a t1 > t0 and following status be provided; exist D0[y0 − x0, θ

n] < λ for t ≥ t0 satisfying

D0[y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), θ
n] = A (6.6)

for t ∈ [t0, t1] . Choose z0 = a(t0, D0[y0 − x0, θ
n]) , we get the inequality

V (t, y(t)− x(t), u(t)) ≤ r(t, t0, z0) t ∈ [t0, t1] (6.7)

So using (6.1) and (6.6), we have

b(A) ≤ V (t1, y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), u(t)) t1 > t0 (6.8)

This means that D0[y(t)− x(t), θn] < ρ for t ∈ [t0, t1] and hence we have the inequality

V (t1, y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), u(t)) ≤ r(t1, t0, z0) t ≥ t0 (6.9)
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By using (6.4) , (6.5), (6.6) and (6.7), we get

b(A) = b(D0[y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), θ
n])

≤ V (t1, y(t1, t0, y0, u(t))− x(t1, t0, x0, u(t)), u(t))

≤ r(t1, t0, z0)

≤ r(t1, t0, a(t0, D0[y0 − x0, θ
n]))

≤ r(t1, t0, a(t0, λ1))

< b(A)

This contradiction gives us practical stability properties of y(t, t0, y0, u(t)) the solution of fuzzy control differ-
ential equation (3.2) with respect to x(t, t0, x0, u(t)) any solution of the system (3.1) for t ≥ t0 .

Assume that the comparison system is practically quasi-stable. Given any b(B) > 0 , there exists a
T = T (t0, B) > 0 such that

0 < z0 = a(t0, ds[z0, 0]) < λ implies z(t, t0, z0) < b(B), t ≥ t0 + T

Setting z0 = a(t, ds[z0, 0]) < λ and using (i);

V (t0, y0 − x0, u(t)) ≤ a(t0, ds[z0, 0]) = z0 < λ

By using (i),

b(D0[y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), θ
n]) ≤ V (t, y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), u(t))

≤ r(t, t0, z0)

< b(B) for t ≥ t0 + T

We obtain
D0[y(t, t0, y0, u(t))− x(t, t0, x0, u(t)), θ

n] < B, t ≥ t0 + T

since b ∈ κ . This proves the practically quasi-stability.

7. Conclusion
While some systems are unstable, they may be stable compared to another system. We chose these two systems
as perturb and unperturb systems. While the perturb system is not stable, it can be stable relative to the
unperturbed system.

1- We improved some theorem for practical stability properties for this comparative system.
2- With this approach, we expand the family of practical stable perturbed system.
3- We developed a new comparison principle for nonlinear diferential systems, then we proved several

practical stability criteria for fuzzy control system.
This study was the preliminary study for the inital time diference practical stability. We will see its

usefulness by integrating the method analytically and numerically into the real problem.
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