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A TYCHONOFF THEOREM FOR GRADED DITOPOLOGICAL TEXTURE

SPACES

RAMAZAN EKMEKÇI

ABSTRACT. In this paper, initial and product graded ditopologies are formulated and ac-

cordingly it is shown that dfGDitop is a topological structure over dfTex× dfTex. By

means of spectrum idea, (di)compactness in graded ditological texture spaces is defined as

a generalization of (di)compactness in ditopological case and its relation with the ditopo-

logical case is investigated. Moreover, the relations between graded difilters and dicom-

pactness of graded ditological texture spaces are studied.

1. INTRODUCTION

The idea “graded ditopology” has been introduced in [7] by Brown and Šostak. This

new structure is more comprehensive than ditopologies basically given in [2, 3] and fuzzy

topologies given independently by Šostak in [11] and Kubiak in [10]. Unlike ditopological

case, in graded ditopologies, openness and closedness are given by means of independent

grading functions.

In this work, we formulate the initial and product graded ditopologies and then we show

that dfGDitop (given in Theorem 1.15) is a topological structure over dfTex×dfTex. Note

that dfTex is the category of textures and difunctions between them [4]. Also dfTex×
dfTex is the product category whose objects are all pairs of textures ((S,S ),(V,V )) and

morphisms are all pairs of difunctions (( f ,F), (h,H)) from ((S,S ), (V,V )) to ((S′,S ′),
(V ′,V ′)) with ( f ,F) : (S,S )→ (S′,S ′), (h,H) : (V,V )→ (V ′,V ′). By using spectral

theory as in [12, 13], we define (di)compactness in graded ditopological texture spaces as

a generalization of (di)compactness in ditopological case and then a Tychonoff Theorem

for that spaces is proved. The relationship between dicompactness spectrum and diconver-

gence (diclustering) spectrum is also studied.

Textures: [2] For a set S, a subset S ⊆P(S) is called a texturing on S if it is a point

separating (i.e. for all s, t ∈ S, s 6= t there exists a set A ∈ S such that s ∈ A, t 6∈ A or

s 6∈ A, t ∈ A), completely distributive, complete lattice with respect to inclusion which
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contains /0, S and for which meet
∧

coincides with intersection
⋂

and finite joins
∨

with

unions
⋃

. In this case (S,S ) is called a texture space or simply a texture.

For any texture (S,S ), many properties are conveniently defined in terms of the p−sets

Ps =
⋂
{A ∈S | s ∈ A}

and the q− sets

Qs =
∨
{A ∈S | s 6∈ A}=

∨
{Pu | u ∈ S,s 6∈ Pu}.

A texture (S,S ) is called plain if Ps * Qs for all s ∈ S or equivalently A =
∨

i∈I Ai =⋃
i∈I Ai for all Ai ∈S , i ∈ I.

In general, a texturing of S need not be closed under set complementation, but there

may exist a mapping σ : S →S satisfying σ(σ(A)) = A and A⊆ B⇒ σ(B)⊆ σ(A) for

all A,B ∈S . In this case σ is called a complementation on (S,S ) and (S,S ,σ) is said to

be a complemented texture.

For any set A ∈S , the core of A (denoted by A[) is defined by

A[ =
⋂{⋃

{Ai | i ∈ I} |{Ai | i ∈ I} ⊆S , A=
∨
{Ai | i ∈ I}

}
.

Product of textures: [3, 4, 5] Let (S j,S j), j ∈ J be textures, S=∏ j∈J S j and Ak ∈Sk

for some k ∈ J. If we write

E(k,Ak) =∏
j∈J

Yj where Yj =

{
A j if j = k

S j otherwise

then the product texturing S =
⊗

j∈J S j of S consists of arbitrary intersections of elements

of the set

ε = {
⋃
j∈J1

E( j,A j) | J1 ⊆ J, A j ∈S j for j ∈ J1}.

Consider two textures (S,S ) and (V,V ). The p-sets and q-sets of the product texture

(S×V,P(S)⊗V ) will be denoted by P(s,v), Q(s,v) respectively.

Definition 1.1. [4] Let (S,S ) and (V,V ) be textures. Then

(1) r ∈P(S)⊗V is called a relation on (S,S ) to (V,V ) if it satisfies

R1 r * Q(s,v), Ps′ * Qs ⇒ r * Q(s′,v).
R2 r * Q(s,v)⇒∃s′ ∈ S such that Ps * Qs′ and r * Q(s′,v).

(2) R ∈P(S)⊗V is called a co-relation on (S,S ) to (V,V ) if it satisfies

CR1 P(s,v)* R, Ps * Qs′ ⇒ P(s′,v)* R.

CR2 P(s,v)* R⇒∃s′ ∈ S such that Ps′ * Qs and P(s′,v)* R.

(3) A pair (r,R), where r is a relation and R a co-relation on (S,S ) to (V,V ) is called

a direlation on (S,S ) to (V,V ).

For a texture (S,S ) the identity direlation (i(S,S ), I(S,S )) is defined by

i(S,S ) =
∨
{P(s,s) | s ∈ S} and I(S,S ) =

⋂
{Q(s,s) | s ∈ S[}.
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For A⊆ S, r→A=
⋂{Qv | ∀s,r*Q(s,v)⇒ A⊆Qs} is called the A-section of r and R→A=∨{Pv | ∀s,P(s,v) * R⇒ Ps ⊆ A} is called the A-section of R.

For B ⊆ V , r←B =
∨{Ps | ∀v,r * Q(s,v)⇒ Pv ⊆ B} is called the B-presection of r and

R←B=
⋂{Qs | ∀v,P(s,v) * R⇒ B⊆ Qv} is called the B-presection of R.

Lemma 1.2. [4] Let r,r1,r2 be relations, R,R1,R2 co-relations on (S,S ) to (V,V ) with

r1 ⊆ r2, R1 ⊆ R2, A,A1,A2 ∈S , A1 ⊆ A2, B,B1,B2 ∈ V , B1 ⊆ B2.

(1) r * Q(s,v)⇔ P(v,s) * r← and P(s,v) * R⇔ R← * Q(v,s) for all s ∈ S, v ∈V .

(2) (r←)← = r and (R←)← = R

(3) For a second direlation (m,M) from (S,S ) to (V,V ), (r,R)v (m,M)⇔ (r,R)← v
(m,M)←

(4) r→ /0= /0, A⊆ r←(r→A), r→(r←B)⊆ B

(5) R→S=V , R←(R→A)⊆ A, B⊆ R→(R←B)
(6) r→1 A1 ⊆ r→2 A2, R→1 A1 ⊆ R→2 A2, r←2 B1 ⊆ r←1 B2, R←2 B1 ⊆ R←1 B2.

Proposition 1.3. [4] If (r,R) is a direlation on (S,S ) to (V,V ) then r→(
∨

i∈I Ai)=
∨

i∈I r→Ai,

R→(
⋂

i∈I Ai) =
⋂

i∈I R→Ai, r←(
⋂

j∈J B j) =
⋂

j∈J r←B j and R←(
∨

j∈J B j) =
∨

j∈J R←B j for

any Ai ∈S , B j ∈ V , i ∈ I, j ∈ J.

Definition 1.4. [4] Let ( f ,F) be a direlation from (S,S ) to (V,V ). Then ( f ,F) is called

a difunction from (S,S ) to (V,V ) if it satisfies the following two conditions:

(DF1) For s,s′ ∈ S, Ps * Qs′ ⇒∃v ∈V with f * Q(s,v) and P(s′,v) * F.

(DF2) For v,v′ ∈V and s ∈ S, f * Q(s,v) and P(s,v′) * F ⇒ Pv′ * Qv.

It is clear that (iS, IS) is a difunction on (S,S ) and we call it the identity difunction on

(S,S ). ( f ,F) is called surjective if

∀v,v′ ∈V Pv * Qv′ ⇒∃s ∈ S with f * Q(s,v′) and P(s,v) * F.

Proposition 1.5. [4] Let ( f ,F) be a difunction on (S,S ) to (V,V ).

(1) f←B= F←B for each B ∈ V .

(2) f← /0= F← /0= /0 and f←V = F←V = S.

(3) A⊆ F←( f→A) and f→(F←B)⊆ B for all A ∈S , B ∈ V .

(4) If ( f ,F) is surjective then F→( f←B) = B= f→(F←B) for all B ∈ V .

Definition 1.6. [2] A dichotomous topology, or ditopology for short, on a texture (S,S ) is

a pair (τ,κ) of subsets of S , where the set of open sets τ satisfies

(T1) S, /0 ∈ τ

(T2) G1,G2 ∈ τ ⇒ G1∩G2 ∈ τ

(T3) Gi ∈ τ, i ∈ I⇒∨
i Gi ∈ τ

and the set of closed sets κ satisfies

(CT1) S, /0 ∈ κ

(CT2) K1,K2 ∈ κ ⇒ K1∪K2 ∈ κ

(CT3) Ki ∈ κ, i ∈ I⇒⋂
i Ki ∈ κ .



196 RAMAZAN EKMEKÇI

Hence a ditopology is essentially a “topology” for which there is no a priori relation

between the open and closed sets.

Definition 1.7. [5] Let (Sk,Sk,τk,κk), k= 1,2 be ditopological texture spaces and ( f ,F) :

(S1,S1)→ (S2,S2) a difunction. ( f ,F) is called continuous if

F←A ∈ τ1, ∀A ∈ τ2

and cocontinuous if

f←A ∈ κ1, ∀A ∈ κ2.

The difunction ( f ,F) is called bicontinuous if it is both continuous and cocontinuous.

Theorem 1.8. [5] Ditopological texture spaces and bicontinuous difunctions form a cate-

gory denoted by dfDiTop.

For s= (s j)∈ S, Ps =
⋂

j∈J E( j,Ps j
) =∏ j∈J Ps j

. The jth-projection difunction (π j,Π j) :

(S,S )→ (S j,S j) is defined by

π j =
∨
{P(s,s j) | s= (s j) ∈ S}, Π j =

⋂
{Q(s,s j) | s= (s j) ∈ S[}

and it is surjective by [6].

For ditopological texture spaces (S j,S j,τ j,κ j), j ∈ J, the product ditopology on the

product texture (S,S ) has subbase {E( j,G) | G ∈ τ j, j ∈ J}, cosubbase {E( j,K) | K ∈
κ j, j ∈ J}.

Proposition 1.9. [5] Let (π j,Π j) be the jth-projection difunction of the product texture

(S,S ) of the textures (S j,S j), j ∈ J. Then

(1) If Ai ∈Si, i ∈ J and Ai 6= /0, i 6= j then π→j
⋂

j∈J E(i,Ai) = A j.

(2) If Ai ∈Si, i ∈ J and Ai 6= Si, i 6= j then Π→j
⋃

j∈J E(i,Ai) = A j.

Proposition 1.10. [15] Let (S,S ) be the product texturing of the textures (S j,S j), j ∈ J.

(S,S ) is plain if and only if (S j,S j) is plain for all j ∈ J.

Definition 1.11. [6] Let (S,S ,τ,κ) be a ditopological texture space and A ∈S . Then

(1) A is called compact if whenever {Gi | i∈ I} is an open cover of A (i.e. ∀i ∈ I Gi ∈ τ

and A⊆∨i∈I Gi) then there is a finite subset J of I with A⊆∨i∈J Gi. In particular

(S,S ,τ,κ) is called compact if S is compact.

(2) A is called cocompact if whenever {Ki | i ∈ I} is a closed cocover of A (i.e.

∀i ∈ I Ki ∈ κ and
⋂

i∈I Ki ⊆ A) then there is a finite subset J of I with
⋂

i∈J Ki ⊆ A.

In particular (S,S ,τ,κ) is called cocompact if /0 is compact.

(3) (S,S ,τ,κ) is called stable if every K ∈ κ with K 6= S is compact.

(4) (S,S ,τ,κ) is called costable if every G ∈ κ with G 6= /0 is cocompact.

(5) (S,S ,τ,κ) is called dicompact if it is compact, cocompact, stable and costable.

Theorem 1.12. [6] A product of non-empty ditopological texture space is dicompact if and

only if each component space is dicompact.
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Graded Ditopological Texture Spaces: [7] Let (S,S ), (V,V ) be textures and consider

T ,K : S → V satisfying

(GT1) T (S) =T ( /0) =V

(GT2) T (A1)∩T (A2)⊆T (A1∩A2) ∀A1,A2 ∈S
(GT3)

⋂
j∈J T (A j)⊆T (

∨
j∈J A j) ∀A j ∈S , j ∈ J

and

(GCT1) K (S) =K ( /0) =V

(GCT2) K (A1)∩K (A2)⊆K (A1∪A2) ∀A1,A2 ∈S
(GCT3)

⋂
j∈J K (A j)⊆K (

⋂
j∈J A j) ∀A j ∈S , j ∈ J

Then T is called a (V,V )-graded topology, K a (V,V )-graded cotopology and (T ,K )
a (V,V )-graded ditopology on (S,S ) and for any graded ditopological texture space

(S,S ,T ,K ,V,V ) and for each v ∈V it is defined that

T v = {A ∈S | Pv ⊆T (A)}, K v = {A ∈S | Pv ⊆K (A)}.
Then (T v,K v) is a ditopology on (S,S ) for each v ∈ V . That is, if (S,S ,T ,K ,V,V )
is any graded ditopological texture space, then there exists a ditopology (T v,K v) on the

texture space (S,S ) for each v ∈V .

If (S,S ,σ) is a complemented texture and (T ,K ) a (V,V )-graded ditopology on

(S,S ), then (K ◦σ ,T ◦σ) is also a (V,V )-graded ditopology on (S,S ). (T ,K ) is

called complemented if (T ,K ) = (K ◦σ ,T ◦σ).
Let (Tk,Kk), k = 1,2 be (V,V )-graded ditopologies on (S,S ). (T1,K1) said to be

coarser than (T2,K2) and (T2,K2) said to be finer than (T1,K1) if T1(A) ⊆ T2(A),
K1(A)⊆K2(A) for all A ∈S [8].

Example 1.13. [7] Let (S,S ,τ,κ) be a ditopological texture space and (V,V ) the discrete

texture on a singleton. Take (V,V ) = (1,P(1)) (The notation 1 denotes the set {0}) and

define τg : S → P(1) by τg(A) = 1 ⇔ A ∈ τ . Then τg is a (V,V )-graded topology

on (S,S ). Likewise, κg defined by κg(A) = 1⇔ A ∈ κ is a (V,V )-graded cotopology on

(S,S ) and (τg,κg) is called the graded ditopology on (S,S ) corresponding to ditopology

(τ,κ).

Definition 1.14. [7] Let (Sk,Sk,Tk,Kk,Vk,Vk), k = 1,2 be graded ditopological texture

spaces, ( f ,F) : (S1,S1)→ (S2,S2), (h,H) : (V1,V1)→ (V2,V2) difunctions. For the pair

(( f ,F),(h,H)), ( f ,F) is called continuous with respect to (h,H) if

H←T2(A)⊆T1(F
←A) for all A ∈S2

and cocontinuous with respect to (h,H) if

h←K2(A)⊆K1( f←A) for all A ∈S2.

The difunction ( f ,F) is called bicontinuous with respect to (h,H) if it is both continuous

and cocontinuous with respect to (h,H).

Theorem 1.15. [7] The class of graded ditopological texture spaces and relatively bicon-

tinuous difunction pairs between them form a category denoted by dfGDitop.
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2. PRODUCT GRADED DITOPOLOGY

Throughout the paper we denote the finite subset of a index set J by J0 and the finite

subfamily of a family U by U0.

Theorem 2.1. Let (S,S ), (V,V ) be textures, (S j,S j,T j,K j,Vj,V j) j∈J be graded ditopo-

logical texture spaces and ( f j,Fj) : (S,S )→ (S j,S j), (h j,H j) : (V,V )→ (Vj,V j), ( j ∈ J)
be difunctions. Then the mappings T ,K : S → V defined by

T (A) =
∨
{
⋂
j∈J0

H←j T j(G j) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J, J0 is f inite}

K (A) =
∨
{
⋂
j∈J0

h←j K j(G j) | A=
⋃
j∈J0

f←j G j, J0 ⊆ J, J0 is f inite}

for all A ∈S form a (V,V )-graded ditopology on (S,S ). (T ,K ) is the coarsest (V,V )-
graded ditopology on (S,S ) that makes ( f j,Fj) bicontinuous with respect to (h j,H j) for

each j ∈ J.

Proof. Firstly, we show that K is a (V,V )-graded cotopology on (S,S ):
(i) Since S = f←j S j and h←j Vj =V for all j ∈ J by Proposition 1.5 (2), if we take a j0 ∈ J

then we have K (S) =
∨{⋂ j∈J0

h←j K j(G j) | S =
⋃

j∈J0
f←j G j, J0 ⊆ J, J0 is f inite} ⊇

h←K j0(S j0) = h←Vj0 =V and so K (S) =V .

On the other hand, since /0 = f←j /0 and h←j /0 = /0 for all j ∈ J by Proposition 1.5 (2),

if we take a j0 ∈ J then we have K ( /0) =
∨{⋂ j∈J0

h←j K j(G j) | /0 =
⋃

j∈J0
f←j G j, J0 ⊆

J, J0 is f inite} ⊇ h←K j0( /0) = h←Vj0 =V (by (GCT1)) and so K ( /0) =V .

(ii) Let A,B ∈ S be given. If there is no G j ∈ S j such that A =
⋃

j∈J0
f←j G j or B =⋃

j∈J0
f←j G j for a finite J0⊆ J then K (A)∩K (B)= /0⊆K (A∪B). So, let A=

⋃
j∈J1

f←j G j

and B=
⋃

j∈J2
f←j L j for some finite subsets J1,J2 ⊆ J and for some G j,L j ∈S j. If we re-

define

G j =

{
G j, j ∈ J1

/0, j ∈ J2

L j =

{
L j, j ∈ J2

/0, j ∈ J1

then we have
⋃

j∈J1
f←j G j =

⋃
j∈J1∪J2

f←j G j and
⋃

j∈J2
f←j L j =

⋃
j∈J1∪J2

f←j L j by the fact

that f←j /0 = /0 for all j ∈ J. Similarly, since K j( /0) = Vj and h←j Vj = V for all j ∈ J, we

have
⋂

j∈J1
h←j K j(G j) =

⋂
j∈J1∪J2

h←j K j(G j) and
⋂

j∈J2
h←j K j(L j) =

⋂
j∈J1∪J2

h←j K j(L j).
Thus we get

K (A)∩K (B)

=
∨
{
⋂
j∈J1

h←j K j(G j) | A=
⋃
j∈J1

f←j G j}∩
∨
{
⋂
j∈J2

h←j K j(L j) | B=
⋃
j∈J2

f←j L j}

=
∨
{
⋂
j∈J1

h←j K j(G j)∩
⋂
j∈J2

h←j K j(L j) | A=
⋃
j∈J1

f←j G j, B=
⋃
j∈J2

f←j L j}
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=
∨
{
⋂

j∈J1∪J2

h←j K j(G j)∩
⋂

j∈J1∪J2

h←j K j(L j) | A=
⋃

j∈J1∪J2

f←j G j, B=
⋃

j∈J1∪J2

f←j L j}

=
∨
{
⋂

j∈J1∪J2

h←j K j(G j)∩h←j K j(L j) | A=
⋃

j∈J1∪J2

f←j G j, B=
⋃

j∈J1∪J2

f←j L j}

=
∨
{
⋂

j∈J1∪J2

h←j (K j(G j)∩K j(L j)) | A=
⋃

j∈J1∪J2

f←j G j, B=
⋃

j∈J1∪J2

f←j L j}

⊆
∨
{
⋂

j∈J1∪J2

h←j (K j(G j ∪L j)) | A∪B=
⋃

j∈J1∪J2

( f←j G j ∪ f←j L j) =
⋃

j∈J1∪J2

f←j (G j ∪L j)}

=
∨
{
⋂

j∈J1∪J2

h←j K j(M j) | A∪B=
⋃

j∈J1∪J2

f←j M j}=K (A∪B)

(iii) Let Ai ∈ S for all i ∈ I where I is a nonempty index set. If for some i ∈ I, Ai

can not be written as Ai =
⋃

j∈Ji
f←j Gi

j where Ji is a finite subset of J then
⋂

i∈I K (Ai) =

/0 ⊆K (
⋂

i∈I Ai). So, for each i ∈ I let Ai =
⋃

j∈Ji
f←j Gi

j for some Gi
j ∈S j, j ∈ Ji. If we

redefine

Gi
j =

{
Gi

j, j ∈ Ji

/0, j 6∈ Ji

then considering f←j /0 = /0, K j( /0) = Vj (by (GCT1)), h←j Vj = V for all j ∈ J and “ j 6∈⋂
i∈I Ji⇒

⋂
i∈I Gi

j = /0” we have

⋂
i∈I

Ai =
⋂
i∈I

⋃
j∈Ji

f←j Gi
j =

⋂
i∈I

⋃
j∈J

f←j Gi
j =

⋃
j∈J

⋂
i∈I

f←j Gi
j

=
⋃
j∈J

f←j (
⋂
i∈I

Gi
j) =

⋃
j∈⋂i∈I Ji

f←j (
⋂
i∈I

Gi
j)

and

⋂
i∈I

(
⋂
j∈Ji

h←j K j(G
i
j)) =

⋂
i∈I

(
⋂
j∈J

h←j K j(G
i
j)) =

⋂
j∈J

h←j
⋂
i∈I

K j(G
i
j)

⊆
⋂
j∈J

h←j K j(
⋂
i∈I

Gi
j) =

⋂
j∈⋂i∈I Ji

h←j K j(
⋂
i∈I

Gi
j)

Therefore we get

⋂
i∈I

K (Ai) =
⋂
(i∈I)

(
∨

(Ai=
⋃

j∈Ji
f←j Gi

j)

(
⋂
( j∈Ji)

h←j K j(G
i
j)))

=
∨

(Ai=
⋃

j∈Ji
f←j Gi

j , i∈I)

⋂
(i∈I)

(
⋂
( j∈Ji)

h←j K j(G
i
j))

⊆
∨

(
⋂

i∈I Ai=
⋂

i∈I

⋃
j∈Ji

f←j Gi
j)

(
⋂

( j∈⋂i∈I Ji)

h←j K j(
⋂
i∈I

Gi
j))
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=
∨

(
⋂

i∈I Ai=
⋃

j∈(⋂i∈I Ji)
f←j (

⋂
i∈I Gi

j))

(
⋂

( j∈⋂i∈I Ji)

h←j K j(
⋂
i∈I

Gi
j))

=
∨

(
⋂

i∈I Ai=
⋃

j∈(⋂i∈I Ji)
f←j B j)

(
⋂

( j∈⋂i∈I Ji)

h←j K j(B j)) =K (
⋂
i∈I

Ai)

So K is a (V,V )-graded cotopology on (S,S ). By the definition of K , ( f j,Fj) is

cocontinuous with respect to (h j,H j) for each j ∈ J.

Let K ′ be a (V,V )-graded cotopology on (S,S ) that makes ( f j,Fj) cocontinuous with

respect to (h j,H j) for each j ∈ J. Then G j ∈S j implies h←j K j(G j)⊆K ′( f←j G j) for each

j ∈ J. So A=
⋃

j∈J0
f←j G j ⇒

⋂
j∈J0

h←j K j(G j)⊆
⋂

j∈J0
K ′ f←j G j ⊆K ′(

⋃
j∈J0

f←j G j) =

K ′(A) for all A ∈S . Hence,

K (A) =
∨
{
⋂
j∈J0

h←j K j(G j) | A=
⋃
j∈J0

f←j G j, J0 ⊆ J, J0 is f inite} ⊆K ′(A)

for all A∈S . Therefore K is the coarsest (V,V )-graded cotopology on (S,S ) that makes

( f j,Fj) cocontinuous with respect to (h j,H j) for each j ∈ J.

Similarly it can be shown that T is the coarsest (V,V )-graded topology on (S,S ) that

makes ( f j,Fj) cocontinuous with respect to (h j,H j) for each j ∈ J. �

Now, referring to [1], we investigate the outcomes of Theorem 2.1 in categorical aspects.

If we consider the forgetful functor U : dfGDitop→ dfTex×dfTex then (dfGDitop,U) is

a concrete category over dfTex×dfTex.

Theorem 2.2. The source

((( f j,Fj),(h j,H j)) : (S,S ,T ,K ,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J)

in dfGDitop is initial if and only if (T ,K ) is the graded ditopology defined as in Theorem

2.1.

Proof. Let the source

((( f j,Fj),(h j,H j)) : (S,S ,T ,K ,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J)

be initial. For each j ∈ J; ( f j,Fj) is bicontinuous with respect to (h j,H j) because (( f j,Fj),
(h j,H j)) is a morphism in dfGDitop. So, H←j T j(G j) ⊆ T (F←j G j) and h←j K j(G j) ⊆
K ( f←j G j) for all G j ∈S j, j ∈ J. If we denote the graded ditopology defined in Theorem

2.1 by (T ?,K ?) then we have

A=
⋂
j∈J0

F←j G j⇒
⋂
j∈J0

H←j T j(G j)⊆
⋂
j∈J0

T (F←j G j)⊆T (
⋂
j∈J0

F←j G j) =T (A)

and so, T ?(A)⊆T (A) for all A ∈S , i.e. T ? ⊆T .

Since ((iS, IS),(iV , IV )) in dfTex×dfTex makes the right hand diagram commutative, it

lifts to a morphism in dfGDitop such that the left hand diagram is commutative.
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Since ((iS, IS),(iV , IV )) is a morphism in dfGDitop, (iS, IS) is bicontinuous with respect

to (iV , IV ). Hence I←V T (A)⊆ T ?(I←S A)⇒ T (A)⊆ T ?(A) for all A ∈S , i.e. T ⊆ T ?.

Therefore we get T =T ?. Similarly it can be shown that K =K ?

Now we will show that

((( f j,Fj),(h j,H j)) : (S,S ,T ?,K ?,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J)

is initial. Let ((k,K),(l,L)) be a morphism in dfTex× dfTex that makes the right hand

diagram commutative.

Then, by using Proposition 1.3, Proposition 1.5 (1) and (GT2) we have

L←(T ?(A)) = L←(
∨
{
⋂
j∈J0

H←j T j(G j) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J})

=
∨
{
⋂
j∈J0

L←(H←j T j(G j)) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J}

=
∨
{
⋂
j∈J0

(H j ◦L)←T j(G j) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J}

=
∨
{
⋂
j∈J0

H ′j
←

T j(G j) | A=
⋂
j∈J0

F←j G j, J0 ⊆ J}

⊆
⋂
j∈J0

T ′(F ′j
←

G j) =
⋂
j∈J0

T ′((Fj ◦K)←G j)

=
⋂
j∈J0

T ′← ◦F←j G j)⊆T ′←(
⋂
j∈J0

F←j G j)) =T ′←A)

for all A ∈S . Hence (k,K) is continuous with respect to (l,L). Similarly it can be shown

that (k,K) is cocontinuous with respect to (l,L) and so (k,K) is bicontinuous with respect

to (l,L). Therefore ((k,K),(l,L)) is a morphism in dfGDitop, i.e. the left hand diagram is

commutative. �

Definition 2.3. The graded ditopology constructed in Theorem 2.1 is called the initial

(V,V )-graded ditopology on (S,S ) induced by

(( f j,Fj),(h j,H j)) j∈J and (S j,S j,T j,K j,Vj,V j)) j∈J .
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Corollary 2.4. dfGDitop is a topological structure over dfTex×dfTex with respect to the

functor U.

Proof. Let (S j,S j,T j,K j,Vj,V j)∈ObdfGDitop and (( f j,Fj),(h j,H j)) : ((S,S ),(V,V ))−→
((S j,S j),(Vj,V j)) is a morphism in dfTex×dfTex for all j ∈ J. If (T ,K ) is the graded

ditopology defined in Theorem 2.1 then, considering Theorem 2.2, ((( f j,Fj),(h j,H j)) :

(S,S ,T ,K ,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J) is the unique initial source, which sat-

isfies

U(((( f j,Fj),(h j,H j)) : (S,S ,T ,K ,V,V )→ (S j,S j,T j,K j,Vj,V j)) j∈J))

= (( f j,Fj),(h j,H j)) : ((S,S ),(V,V ))−→ ((S j,S j),(Vj,V j)) j∈J).

�

Definition 2.5. Let (S,S ) and (V,V ) be the product textures of the textures (S j,S j) j∈J

and (Vj,V j) j∈J respectively then the initial (V,V )-graded ditopology on (S,S ) induced by

the projection difunctions (πS
j ,∏

S
j) : (S,S )→ (S j,S j) and (πV

j ,∏
V
j ) : (V,V )→ (Vj,V j)

is called the product graded ditopology of (S j,S j,T j,K j,Vj,V j) j∈J .

Example 2.6. Let (τ,κ) be the product ditopology of (S j,S j,τ j,κ j) j∈J . For each j ∈ J, if

we take (Vj,V j) = (1,P(1)) then (S j,S j,τ
g
j ,κ

g
j ,Vj,V j) is a graded ditopological texture

space where τ
g
j(A) = 1⇔ A∈ τ j and κ

g
j(A) = 1⇔ A∈ κ j, A∈S j. So, the product graded

ditopology (T ,K ) of (S j,S j,τ
g
j ,κ

g
j ,Vj,V j) j∈J equals the graded ditopology (τg,κg) cor-

responding to ditopology (τ,κ). Indeed, for all A ∈S , by the definition of T and (GT3)
we have

τ
g(A) = 1⇔ A ∈ τ

⇔ A=
∨
i∈I

Bi, Bi =
⋂
j∈Ji

(π←j G j), Ji ⊆ J f inite, G j ∈ τ j for a index set I

⇔ A=
∨
i∈I

Bi, Bi =
⋂
j∈Ji

(π←j G j), Ji ⊆ J f inite, τ
g
j(G j) = 1 for a index set I

⇔ A=
∨
i∈I

Bi, T (Bi) = 1 for a index set I ⇔T (A) = 1

3. COMPACTNESS IN GRADED DITOPOLOGICAL TEXTURE SPACES

A. P. Šostak has developed the spectral approach for the study of various topological

properties of fuzzy topological spaces in [12]. Accordingly, we use this effective approach

to study compactness notion (in accordance with fuzzy idea) in graded ditopological tex-

ture spaces as a generalization of compactness in ditopological texture spaces.

Definition 3.1. Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space and A ∈
S . The families defined by

C (A) = {Pv ∈ V | [U ⊆T v, A⊆
∨

U ]⇒∃U0 ⊆U : A⊆
∨

U0}
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C ∗(A) = {Pv ∈ V | [U ⊆K v,
∧

U ⊆ A]⇒∃U0 ⊆U :
∧

U0 ⊆ A}
where U0 denotes a finite subfamily of U , are called compactness and co-compactness

spectrums of A ∈ S respectively. In particular, the compactness spectrum and the co-

compactness spectrum of (S,S ,T ,K ,V,V ) are C (S) and C ∗( /0) respectively.

Proposition 3.2. If (S,S ,T ,K ,σ ,V,V ) is a complemented graded ditopological texture

space then C (A) = C ∗(σ(A)) for all A ∈S . In particular, C (S) = C ∗( /0) i.e. the com-

pactness and co-compactness spectrums of a complemented graded ditopological texture

space are equal.

Proof. Since A⊆∨U ⇔ σ(A)⊇ σ(
∨

U ) =
∧

σ(U )⇔∧
σ(U )⊆ σ(A) and U ∈T v⇔

σ(U) ∈K v for all U ∈S we get

C (A) = {Pv ∈ V | [U ⊆T v, A⊆
∨

U ]⇒∃U0 ⊆U : A⊆
∨

U0}

= {Pv ∈ V | [σ(U )⊆K v,
∧

σ(U )⊆ σ(A)]⇒∃σ(U0)⊆ σ(U ) :
∧

σ(U0)⊆ σ(A)}

= {Pv ∈ V | [U ′ ⊆K v,
∧

U ′ ⊆ σ(A)]⇒∃U ′
0 ⊆U :

∧
U ′

0 ⊆ σ(A)}= C ∗(σ(A))

where U ′ = σ(U ) and U ′
0 = σ(U0). In particular, since S = σ( /0) we have C (S) =

C ∗( /0). �
Theorem 3.3. Let (Sk,Sk,Tk,Kk,Vk,Vk)k=1,2 be graded ditopological texture spaces and

let ( f ,F) : (S1,S1)→ (S2,S2), (h,H) : (V1,V1)→ (V2,V2) be difunctions. For all A∈S1

(1) If ( f ,F) is continuous with respect to (h,H) then,

Pv1
∈ C1(A)⇒ Pv2

∈ C2( f→A)

(2) If ( f ,F) is cocontinuous with respect to (h,H) then,

Pv1
∈ C ∗1 (A)⇒ Pv2

∈ C ∗2 (F
→A)

where Pv1
∈ V1, Pv2

∈ V2 with Pv1
⊆ h←Pv2

.

Proof. Let Pv1
∈C1(A) and Pv1

⊆ h←Pv2
. If U ⊆T v2

2 and f→A⊆∨U then A⊆F←( f→A)⊆
F←(

∨
U )=

∨
F←U =

∨
U∈U F←U . Moreover, Pv1

⊆ h←Pv2
⊆ h←(T2(U ))⊆T1(F

←U )
since ( f ,F) is continuous with respect to (h,H). Now, because of Pv1

∈ C1(A) there

exists a finite subfamily F←(U0) ⊆ F←(U ) such that A ⊆ ∨F←(U0). This follows

f→A⊆ f→
∨

F←(U0) =
∨

f→(F←(U0))⊆
∨

U0. Hence Pv2
∈ C2( f→A).

The proof of (2) is similar. �
Corollary 3.4. Let the difunction ( f ,F) in Theorem 3.3 be surjective.

(1) If ( f ,F) is continuous with respect to (h,H) then,

Pv1
∈ C1(S1)⇒ Pv2

∈ C2(S2)
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(2) If ( f ,F) is cocontinuous with respect to (h,H) then,

Pv1
∈ C ∗1 ( /0)⇒ Pv2

∈ C ∗2 ( /0)

where Pv1
∈ V1, Pv2

∈ V2 with Pv1
⊆ h←Pv2

.

Proof. Immediate from f→S1 = S2 and F→ /0= /0. �

Corollary 3.5. Let (S j,S j,T j,K j,Vj,V j) j∈J be non-empty graded ditopological texture

spaces and (S,S ,T ,K ,V,V ) their product graded ditopological texture space. Then for

all j ∈ J;

(1) Pv ∈ C (S)⇒ Pv j
∈ C j(S j)

(2) Pv ∈ C ∗( /0)⇒ Pv j
∈ C ∗j ( /0)

where Pv =∏ j∈J Pv j
∈ V and Pv j

∈ V j.

Proof. We have Pv ⊆ πV
j

←
(πV

j

→
Pv) = πV

j

←
(Pv j

) for all j ∈ J and v ∈V by Proposition 1.5

(3). So, the proof follows from Corollary 3.4. �

Theorem 3.6. (Tychonoff Theorem) Let (S j,S j,T j,K j,Vj,V j) j∈J be non-empty graded

ditopological texture spaces and (S,S ,T ,K ,V,V ) their product graded ditopological

texture space. If (Vj,V j) j∈J are plain textures then;

(1) Pv ∈ C (S)⇔∀ j ∈ J Pv j
∈ C j(S j)

(2) Pv ∈ C ∗( /0)⇔∀ j ∈ J Pv j
∈ C ∗j ( /0)

where Pv =∏ j∈J Pv j
∈ V and Pv j

∈ V j.

Proof. The necessity comes from Corollary 3.5. For sufficiency let Pv ∈ V and Pv j
=

πv
j
→Pv ∈ C j(S j) for all j ∈ J. If U ⊆T v and S=

∨
U then we get for all j ∈ J

S j = π
s
j
→(S) = π

s
j
→(
∨

U ) =
∨

U∈U
π

s
j
→

U

On the other hand, since U ⊆T v, U ∈U implies

Pv ⊆T (U) =
∨
{
⋂
j∈J0

Π
v
j
←T j(G j) |U =

⋂
j∈J0

Π
s
j
←

G j, J0 ⊆ J, J0 is finite}

Since (Vj,V j) j∈J are plain, (V,V ) is also plain by Proposition 1.10. Hence,

Pv ⊆
⋂

j∈J0
Πv

j
←T j(G

U
j ) for some U =

⋂
j∈J0

Πs
j
←GU

j with GU
j ∈S j, j ∈ J0. From Propo-

sition 1.5 (3) we have

Pv ⊆
⋂
j∈J0

Π
v
j
←T j(G

U
j )⇒∀ j ∈ J0 Pv ⊆Π

v
j
←T j(G

U
j )

⇒∀ j ∈ J0 Pv j
= π

v
j
→

Pv ⊆ π
v
j
→(Πv

j
←T j(G

U
j ))⊆T j(G

U
j )⇒ Pv j

⊆T j(G
U
j ).

Since U =
⋂

j∈J0
Πs

j
←GU

j =
⋂

j∈J0
E( j,GU

j ) we get πs
j
→U = πs

j
→(
⋂

j∈J0
E( j,GU

j )) = GU
j

by Proposition 1.9 (1). So, considering (1) we have S j =
∨

U∈U πs
j
→U =

∨
U∈U GU

j . Since
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GU
j ∈T

v j

j and Pv j
∈ C j(S j) we get

∃U0 ⊆U : S j ⊆
∨

U∈U0

GU
j ( j ∈ J0).

Thus, S=Πs
j
←S j ⊆Πs

j
←(
∨

U∈U0
GU

j )⊆
∨

U∈U0
Πs

j
←GU

j for all j ∈ J0 and so,⊗
j∈J

S j = S⊆
⋂
j∈J0

(
∨

U∈U0

Π
s
j
←

GU
j ) =

∨
U∈U0

(
⋂
j∈J0

Π
s
j
←

GU
j ) =

∨
U∈U0

(
⋂
j∈J0

E( j,GU
j )).

By the definition of E( j,GU
j );

j 6∈ J0⇒ S j = π
s
j
→

S⊆ π
s
j
→(

∨
U∈U0

⋂
j∈J0

E( j,GU
j )) = π

s
j
→(

∨
U∈U0

U)

j ∈ J0⇒ S j = π
s
j
→

S⊆ π
s
j
→(

∨
U∈U0

⋂
j∈J0

E( j,GU
j )) = π

s
j
→(

∨
U∈U0

U)

and hence, S j = πs
j
→S ⊆ πs

j
→(
∨

U∈U0
U) for all j ∈ J. That means S ⊆ ∨U∈U0

U and as a

result Pv ∈ C (S). �

Definition 3.7. For a graded ditopological texture space (S,S ,T ,K ,V,V ), the families

defined by

Ω= {Pv ∈ V | [A ∈S , A 6= S]⇒ [Pv ⊆K (A)⇒ Pv ∈ C (A)]}

Ω
∗ = {Pv ∈ V | [A ∈S , A 6= /0]⇒ [Pv ⊆T (A)⇒ Pv ∈ C ∗(A)]}

are called stableness and costableness spectrums of (S,S ,T ,K ,V,V ) respectively.

Proposition 3.8. For a complemented graded ditopological texture space

Proposition 3.9. For a complemented graded ditopological texture space

(S,S ,T ,K ,σ ,V,V ), Ω=Ω∗.

Proof. Let Pv ∈ Ω∗ and A ∈ S , A 6= S. Then, Pv ⊆K (A)⇒ Pv ⊆ (T ◦σ)(A)⇒ Pv ⊆
T (σ(A)). Since σ(A) 6= /0 and Pv ∈ Ω∗ we have Pv ∈ C ∗(σ(A)) = C (A) by Proposition

3.2. So, Pv ∈Ω. The other direction of the proof can be shown similarly. �

Proposition 3.10. Let (Sk,Sk,Tk,Kk,Vk,Vk)k=1,2 be graded ditopological texture spaces

with stableness (costableness) spectrums Ω1, Ω2 (Ω∗1, Ω∗2) respectively. If ( f ,F) : (S1,S1)→
(S2,S2), (h,H) : (V1,V1)→ (V2,V2) are surjective difunctions and ( f ,F) is bicontinuous

with respect to (h,H) then Pv1
∈Ω1⇒ Pv2

∈Ω2 and Pv1
∈Ω∗1⇒ Pv2

∈Ω∗2 where v1 ∈V1,

v2 ∈V2 with Pv1
⊆ h←Pv2

.

Proof. Let ( f ,F) be bicontinuous with respect to (h,H) and Pv1
∈ Ω1 with Pv1

⊆ h←Pv2
.

For a set A ∈ S2 with A 6= S2 we have; Pv2
⊆ K2(A) ⇒ Pv1

⊆ h←Pv2
⊆ h←K2(A) ⊆

K1( f←A) by the bicontinuity of ( f ,F)with respect to (h,H). On the other hand, f←A 6= S1

since ( f ,F) is surjective and A 6= S2. So, Pv1
⊆ K1( f←A) and Pv1

∈ Ω1 imply Pv1
∈

C1( f←A).
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Now, by using Theorem 3.3 we have Pv2
∈ C2( f→( f←A)). Since ( f ,F) is surjective we

get f→( f←A) = f→(F←A) = A by Proposition 1.5 (4). Therefore we have Pv2
∈ C2(A)

and that means Pv2
∈Ω2. �

Corollary 3.11. Let (S j,S j,T j,K j,Vj,V j) j∈J be non-empty graded ditopological texture

spaces with stableness (costableness) spectrums Ω j, (Ω∗j ) respectively and (S,S ,T ,K ,V,V )
their product graded ditopological texture space with stableness (costableness) spectrum

Ω, (Ω∗) respectively. Then for all j ∈ J;

(1) Pv ∈Ω⇒ Pv j
∈Ω j

(2) Pv ∈Ω∗⇒ Pv j
∈Ω∗j

where Pv =∏ j∈J Pv j
∈ V and Pv j

∈ V j.

Proof. We have Pv ⊆ πv
j
←(πv

j
→Pv) = πv

j
←(Pv j

) for all j ∈ J and v ∈V by Proposition 1.5

(3). So, the proof follows from Proposition 3.10. �

The other direction of Corollary 3.11 (i.e. ∀ j ∈ J Pv j
∈ Ω j ⇒ Pv ∈ Ω and ∀ j ∈ J Pv j

∈
Ω∗j⇒Pv ∈Ω∗) is an open problem for now as in the ditopological case in [6]. So we use the

method which based on the relationship between ditopological and graded ditopological

case to prove Theorem 3.16.

Definition 3.12. For a graded ditopological texture space (S,S ,T ,K ,V,V ), the family

defined by

DC = C (S)∩C ∗( /0)∩Ω∩Ω
∗

is called dicompactness spectrum of (S,S ,T ,K ,V,V ).

Example 3.13. Let (S,S ,τ,κ) be a ditopological texture space and (V,V ) = (1,P(1))
the discrete texture on a singleton. If (S,S ,τ,κ) is compact (cocompact, dicompact) then

for the graded ditopological texture space (S,S ,τg,κg,V,V ), Pv ∈ C (S) (Pv ∈ C ∗(S),
Pv ∈DC ) respectively for all v ∈V , i.e. v= 0.

Proposition 3.14. Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space. Then

the following hold:

(1) Pv ∈ C (S)⇔ (S,S ,T v,K v) is compact

(2) Pv ∈ C ∗( /0)⇔ (S,S ,T v,K v) is cocompact

(3) Pv ∈Ω⇔ (S,S ,T v,K v) is stable

(4) Pv ∈Ω∗⇔ (S,S ,T v,K v) is costable

(5) Pv ∈DC ⇔ (S,S ,T v,K v) is dicompact

Example 3.15. Let (S,S =P(S)) and (V,V =P(V )) be discrete textures where S 6= /0

and V = {a,b,c}. Then the mappings T ,K : S → V defined by

T (A) =

{
V, A= /0 or A= S

{a}, otherwise

K (A) =

{
V, A= /0 or A= S

{b}, otherwise
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for all A ∈S form a (V,V )-graded ditopology on (S,S ). We have T a =S =P(S),
T b = T c = {S, /0}, K b =S =P(S), K a =K c = {S, /0}. If S is finite then we have

C (S) = C ∗( /0) =Ω=Ω∗ =DC = {Pa,Pb,Pc}= {{a},{b},{c}}.
If S is infinite then for an infinite subset A ⊆ S, U = {Px | x ∈ A} implies A ⊆ ∨U =∨

x∈A{x} however there is no finite subfamily U0 of U such that A ⊆ ∨U0. So we get

C (S) =Ω= {Pb,Pc}. Similarly, for a subset A⊆ S, if S\A is infinite then U = {(S\A)\
Px | x ∈ (S \A)} implies

∧
U =

∧
x∈(S\A)((S \A) \Px) = /0 ⊆ A however there is no finite

subfamily U0 of U such that
∧

U0 ⊆ A. Hence we get C ∗( /0) =Ω∗ = {Pa,Pc}. Therefore,

if S is infinite then DC = C (S)∩C ∗( /0)∩Ω∩Ω∗ = {Pc}= {{c}} is obtained.

Theorem 3.16. Let (S j,S j,T j,K j,Vj,V j) j∈J be non-empty graded ditopological tex-

ture spaces and (S,S ,T ,K ,V,V ) their product graded ditopological texture space. If

(Vj,V j) j∈J are plain textures then;

Pv ∈DC ⇔∀ j ∈ J Pv j
∈DC j

where Pv =∏ j∈J Pv j
∈ V and Pv j

∈ V j.

Proof. (⇒): It is obvious from Theorem 3.6 and Corollary 3.11.

(⇐): Let Pv j
∈DC j for all j∈ J where Pv=∏ j∈J Pv j

∈V and Pv j
∈V j. Then ditopological

texture spaces (S j,S j,T
v j

j ,K
v j

j ) j∈J are dicompact by Proposition 3.14. So, their product

ditopological texture space (S,S ,Tv,Kv) is dicompact by Theorem 1.12.

Now, we show that Tv =T v. Take A ∈Tv then A=
∨

B∈β
′ B where β

′ ⊆ β and β is the

base for the ditopology (Tv,Kv). On the other hand, if B ∈ β
′

there exists a finite subset

J0 ⊆ J with B=
⋂

j∈J0
ΠS

j

←
G j such that “G j ∈T

v j

j for all j ∈ J0”. This follows,

∀ j ∈ J0 Pv j
⊆T j(G j)⇒∀ j ∈ J0 Π

V
j

←
Pv j
⊆Π

V
j

←
T j(G j)

⇒ Pv ⊆
⋂
j∈J0

Π
V
j

←
Pv j
⊆
⋂
j∈J0

Π
V
j

←
T j(G j)

because Pv ⊆ ΠV
j

←
(πV

j

→
Pv) = ΠV

j

←
(Pv j

) for all j ∈ J and v ∈ V by Proposition 1.5 (3).

Thus we have Pv ⊆
⋂

j∈J0
ΠV

j

←
T j(G j) and B =

⋂
j∈J0

ΠS
j

←
G j where J0 ⊆ J is a finite

subset. So we get Pv ⊆ T (B) by the definition of T . Using GT3 we obtain that T (A) =
T (
∨

B∈β
′ B)⊇⋂B∈β

′T (B)⊇ Pv and so A ∈T v.

If we take A ∈ T v then Pv ⊆ T (A). Since (Vj,V j) j∈J are plain, (V,V ) is also plain by

Proposition 1.10. Hence, considering the definition of T we have:

∃J0 ⊆ J finite with A=
⋂
j∈J0

Π
S
j

←
G j : Pv ⊆

⋂
j∈J0

Π
V
j

←
T j(G j).

Besides, considering Proposition 1.5 (3) we get

Pv ⊆
⋂
j∈J0

Π
V
j

←
T j(G j)⇒∀ j ∈ J0 Pv ⊆Π

V
j

←
T j(G j)
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⇒∀ j ∈ J0 Pv j
= π

V
j

→
Pv ⊆ π

V
j

→
(ΠV

j

←
T j(G j))⊆T j(G j).

Thus we obtain that

∃J0 ⊆ J finite with A=
⋂
j∈J0

Π
S
j

←
G j : “∀ j ∈ J0 Pv j

⊆T j(G j)”

⇒∃J0 ⊆ J finite with A=
⋂
j∈J0

Π
S
j

←
G j : “∀ j ∈ J0 G j ∈T

v j

j ”⇒ A ∈Tv

Similarly it can be shown that Kv =K v. That means (S,S ,T v,K v) is dicompact

and so, Pv ∈DC . �
Note that in Theorem 3.16, the textures (S j,S j) j∈J don’t have to be plain unlike the

textures (Vj,V j) j∈J . It is an open problem whether Theorem 3.16 is still true in case

(Vj,V j) j∈J are not plain.

4. GRADED DIFILTERS AND DICOMPACTNESS SPECTRUM

Difilters on Textures: [14] Let (S,S ) be a texture. F ⊆S is called a filter on (S,S )
if (i) F 6= /0, (ii) /0 6∈ F , (iii) F ∈ F , F ⊆ F ′ ∈ S ⇒ F ′ ∈ F and (iv) F1,F2 ∈ F ⇒
F1∩F2 ∈F . G ⊆S is called a cofilter on (S,S ) if (i) G 6= /0, (ii) S 6∈ G , (iii) G ∈ G , G⊇
G′ ∈S ⇒ G′ ∈ G , and (iv) G1,G2 ∈ G ⇒ G1∪G2 ∈ G . If F is a filter and G is a cofilter

on (S,S ) then F ×G is called a difilter on (S,S ). A difilter F ×G on (S,S ) is called

regular if F ∩G = /0.

Proposition 4.1. [14] If F ×G is a difilter on (S,S ,τ,κ) then

(a) F converges to s ∈ S[ (F → s)⇔ “G ∈ τ, G* Qs⇒ G ∈F”

(b) G converges to s (G → s)⇔ “K ∈ κ, Ps * K⇒ K ∈ G ”

(c) F ×G is diconvergent if F → s and G → s′ for some s,s′ ∈ S with Ps′ * Qs.

A difilter F ×G on (S,S ,τ,κ) is said to be diclustering if A ∈ F ⇒ Ps′ ⊆ [A] and

B ∈ G ⇒]B[⊆ Qs for some s,s′ ∈ S with Ps′ * Qs.

Theorem 4.2. [14] A regular difilter F×G on (S,S ) is maximal if and only if F ∪G = S.

Proposition 4.3. [14] A maximal regular difilter is diconvergent if and only if it is diclus-

tering.

Theorem 4.4. [14] A ditopological texture space (S,S ,τ,κ) is dicompact if and only if

every regular difilter on (S,S ,τ,κ) is diclustering if and only if every maximal regular

difilter on (S,S ,τ,κ) is diconvergent.

Graded difilters : [9] Let (S,S ) and (V,V ) be textures. A mapping F : S → V
is called a (V,V )-graded filter on (S,S ) if (i) F( /0) = /0, (ii) A1 ⊆ A2 ⇒ F(A1) ⊆ F(A2)
and (iii) F(A1)∧F(A2) ⊆ F(A1 ∩A2). A mapping G : S → V is called a (V,V )-graded

cofilter on (S,S ) if (i)G(S)= /0, (ii) A1⊆A2⇒G(A2)⊆G(A1) and (iii)G(A1)∧G(A2)⊆
G(A1∪A2). If F is a (V,V )-graded filter and G (V,V )-graded cofilter on (S,S ) then the

pair (F,G) is called a (V,V )-graded difilter on (S,S ).
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(F,G) is called regular if F∧G= /0 i.e. F(A)∧G(A) = /0 for all A ∈S .

The diconvergent graded difilters were defined in [9]. To avoid a long preliminaries we

will give the following equivalent proposition instead of the definition.

Proposition 4.5. [9] If (F,G) is a (V,V )-graded difilter on (S,S ,T ,K ,V,V ) then

(a) F converges to s (F→ s)⇔ “A* Qs⇒T (A)⊆ F(A)”
(b) G converges to s (G→ s)⇔ “Ps * A⇒K (A)⊆G(A)”
(c) For s,s′ ∈ S, (F,G) is diconvergent if Ps′ * Qs, F→ s and G→ s′.

Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space, A ∈S and v ∈V . The

set
⋂{B ∈S |A⊆ B, Pv ⊆K (B)} ∈S is called v-closure of A and denoted by [A]v. The

set
∨{B ∈S |B⊆ A, Pv ⊆T (B)} ∈S is called v-interior of A and denoted by ]A[v. Note

that for each v ∈V , [A]v (]A[v) is the closure (the interior) of A in the ditopological texture

space (S,S ,T v,K v).
A regular graded difilter (F,G) on (S,S ,T ,K ,V,V ) is called diclustering if for all

A ∈S , v ∈ F(A)⇒ Ps ⊆ [A]v and v ∈G(A)⇒]A[v⊆ Qs′ for some s,s′ ∈ S with Ps * Qs′ .

Proposition 4.6. [9] Let (F,G) be a regular (V,V )-graded difilter on (S,S ). For the

statements

(1) (F,G) is a maximal regular (V,V )-graded difilter

(2) F∨G=V (i.e. ∀A ∈S ,F(A)∨G(A) = F(A)∪G(A) =V )

(1)⇐ (2) and in case of (V,V ) is discrete, (1)⇒ (2) are hold.

if (F,G) be a (regular) (V,V )-graded difilter on a texture (S,S ) then the families

Fv = {A ∈S | Pv ⊆ F(A)}, Gv = {A ∈S | Pv ⊆G(A)}

form a (regular) difilter Fv×Gv on (S,S ) for each v ∈V [9].

Proposition 4.7. [9] Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space.

Then, for the statements

(a) Every regular graded difilter on (S,S ,T ,K ,V,V ) is diclustering.

(b) Every maximal regular graded difilter on (S,S ,T ,K ,V,V ) is diconvergent.

the implication (b)⇒ (a) and in case of (V,V ) is discrete, (a)⇒ (b) are hold.

Definition 4.8. Let (F,G) be a regular graded difilter on a graded ditopological texture

space (S,S ,T ,K ,V,V ). Then the family defined by

Dcl(F,G) = {Pv | ∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[v ∈G(A)⇒]A[v⊆ Qs′ and v ∈ F(A)⇒ Ps ⊆ [A]v]}

is called diclustering spectrum of (F,G).
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Example 4.9. Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space and v ∈V .

If F ×G is a a regular difilter on (S,S ,T v,K v) then the mappings defined by

FF (A) =

{
V, A ∈F
/0, A 6∈F

GG (A) =

{
V, A ∈ G
/0, A 6∈ G

for all A ∈S form a regular graded difilter (FF ,GG ) on (S,S ,T ,K ,V,V ). Moreover,

Fv
F =F and Gv

G = G .

Proposition 4.10. For a graded ditopological texture space (S,S ,T ,K ,V,V ), the fol-

lowing equation holds:

DC =
⋂
{Dcl(F,G) | (F,G) is a regular graded difilter}

Proof. Let Pv ∈
⋂{Dcl(F,G) | (F,G) is a regular graded difilter} and take a regular difilter

F×G on (S,S ,T v,K v). Then (FF ,GG ) is a regular graded difilter on (S,S ,T ,K ,V,V ).
Since Pv ∈

⋂{Dcl(F,G) | (F,G) is a regular graded difilter} we have Pv ∈ Dcl(FF ,GG ).
So we get

∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S [v ∈GG (A)⇒]A[v⊆ Qs′ and v ∈ FF (A)⇒ Ps ⊆ [A]v].
This follows that “A ∈ Gv

G ⇒]A[v⊆ Qs′” and “A ∈ Fv
F ⇒ Ps ⊆ [A]v”. Thus we have “A ∈

G ⇒]A[⊆ Qs′”, “A ∈F ⇒ Ps ⊆ [A]” and this implies that F ×G is diclustering. Since

every regular difilter on (S,S ,T v,K v) is diclustering, (S,S ,T v,K v) is dicompact by

Theorem 4.4 and that means Pv ∈DC .

On the other hand, let Pv ∈DC and take a regular graded difilter (F,G) on (S,S ,T ,K ,V,V ).
Then (Fv×Gv) is a regular difilter on (S,S ,T v,K v). Since Pv ∈ DC , (S,S ,T v,K v)
is dicompact and so, (Fv×Gv) is diclustering by Theorem 4.4. That means “A ∈ Gv ⇒
]A[⊆ Qs′”, “A ∈ Fv⇒ Ps ⊆ [A]” for some s,s′ ∈ S with Ps * Qs′ . Thus we get,

∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S [v ∈G(A)⇒]A[v⊆ Qs′ and v ∈ F(A)⇒ Ps ⊆ [A]v].
Hence we get Pv ∈

⋂{Dcl(F,G) | (F,G) is a regular graded difilter}. �

Lemma 4.11. Let (V,V ) be a discrete texture. If (F,G) is a maximal regular graded

difilter on a graded ditopological texture space (S,S ,T ,K ,V,V ) then the regular difilter

Fv×Gv on (S,S ,T v,K v) is maximal for all v ∈V .

Proof. Let (F,G) be a maximal regular graded difilter on (S,S ,T ,K ,V,V ) and v ∈ V .

Since (V,V ) is a discrete texture we have F∨G=V by Proposition 4.6. We also know that

Fv×Gv is a regular difilter. Consider Fv = {A ∈S | Pv ⊆ F(A)} and Gv = {A ∈S | Pv ⊆
G(A)}. Since F∨G=V and (V,V ) is discrete we get

A ∈S ⇒ Pv ⊆ F(A)∨G(A) = F(A)∪G(A)⇒ Pv ⊆ F(A) or Pv ⊆G(A)
⇒ A ∈ Fv or A ∈Gv⇒ A ∈ Fv∪Gv

for all A ∈S . That means Fv∪Gv =S and so Fv×Gv is maximal by Theorem 4.2. �
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Lemma 4.12. Let (S,S ,T ,K ,V,V ) be a graded ditopological texture space and v ∈V .

If F ×G is a maximal regular difilter on (S,S ,T v,K v) then the regular graded difilter

(FF ,GG ) on (S,S ,T ,K ,V,V ) is maximal.

Proof. Let F ×G be a maximal regular difilter on (S,S ,T v,K v). Then we have F ∪
G =S . So, for all A∈S we get A∈F or A∈G . This follows FF (A)=V orGG (A)=V .

That means FF ∨GG =V . Hence (FF ,GG ) is maximal by Proposition 4.6. �
Definition 4.13. Let (F,G) be a graded difilter on a graded ditopological texture space

(S,S ,T ,K ,V,V ). The family defined by

Dcn(F,G) = {Pv | ∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[(A ∈T v, A* Qs)⇒ A ∈ Fv and (A ∈K v, Ps′ * A)⇒ A ∈Gv]}
is called diconvergence spectrum of (F,G).

Proposition 4.14. Let (V,V ) be a discrete texture. For a graded ditopological texture

space (S,S ,T ,K ,V,V ), the following equation holds:

DC =
⋂
{Dcn(F,G) | (F,G) is a maximal regular graded difilter}

Proof. Let Pv ∈
⋂{Dcn(F,G) | (F,G) is a maximal regular graded difilter} and F ×G be

a maximal regular difilter on (S,S ,T v,K v). Then (FF ,GG ) is a maximal regular graded

difilter on (S,S ,T ,K ,V,V ) by Lemma 4.12.

Since Pv ∈
⋂{Dcn(F,G) | (F,G) is a maximal regular graded difilter} we have Pv ∈

Dcn(FF ,GG ). This follows

∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[(A ∈T v, A* Qs)⇒ A ∈ Fv
F and (A ∈K v, Ps′ * A)⇒ A ∈Gv

G ].

Therefore we get “(A ∈ T v, A * Qs)⇒ A ∈ F ” and “(A ∈ K v, Ps′ * A)⇒ A ∈ G ”.

Considering Proposition 4.1, F ×G is diconvergent and so, (S,S ,T v,K v) is dicompact

by Theorem 4.4. Hence we get Pv ∈DC .

On the other hand, let Pv ∈ DC and take a maximal regular graded difilter (F,G) on

(S,S ,T ,K ,V,V ). Then Fv×Gv is a maximal regular difilter on (S,S ,T v,K v) by

Lemma 4.11. Besides, (S,S ,T v,K v) is dicompact since Pv ∈ DC . So, Fv ×Gv is

diconvergent by Theorem 4.4. Thus we have

∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[(A ∈T v, A* Qs)⇒ A ∈ Fv and (A ∈K v, Ps′ * A)⇒ A ∈Gv].

Hence we get Pv ∈ Dcn(F,G) i.e.,

Pv ∈
⋂
{Dcn(F,G) | (F,G) is a maximal regular graded difilter}.

�
Corollary 4.15. Let (V,V ) be a discrete texture. If (F,G) is a maximal regular graded

difilter on a graded ditopological texture space (S,S ,T ,K ,V,V ). Then

Dcn(F,G) = Dcl(F,G)
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Proof. Considering Lemma 4.11 and Proposition 4.3 we have

Pv ∈ Dcn(F,G)⇔ “∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S

[(A ∈T v, A* Qs)⇒ A ∈ Fv and (A ∈K v, Ps′ * A)⇒ A ∈Gv]”

⇔ “Fv→ s, Gv→ s′ and Ps * Qs′”

⇔ “∃s,s′ ∈ S with Ps * Qs′ : ∀A ∈S [A ∈Gv⇒]A[v⊆ Qs′ and A ∈ Fv⇒ Ps ⊆ [A]v]”
⇔ Pv ∈ Dcl(F,G).

�
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