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Abstract: Cryptology is the significant science which is inseparable from the means of 

communication of secrets. In a safe manner, it has the main objective of transmitting (potentially 

sensitive) information between two interlocutors. One distinguishes mainly two "dual" 

disciplines within cryptology: 

(a) cryptography, which is interested in the security of information.  

(b) cryptanalysis, which seeks to attack it. 
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One have a starting set of 256 elements, we add a new element to this set to form a set of 

257 elements. In this paper, we consider a finite field that contains 257 elements. As with any 

field, a finite field is a set on which the operations of multiplication, addition, subtraction and 

division are defined and satisfy certain basic rules. The most common examples of finite fields 

are given by the integers modulo p when p is a prime number. For our case ℤ/pℤ, p = 257. 

We apply it to affine ciphers and show that this cipher looks like a permutation cipher. The 

idea based on this result, is to use the affine ciphers with the modulo 257 (as an initial 

permutation) in any specific algorithm of ciphering. Besides, one finishes with the decryption 

affine with the modulo 257 like an inverse permutation. This is to significantly increase the 

security of the specific encryption algorithm and to lengthen the 16-bits encryption key. 

Keywords: Cryptography, Algebraic field, Primes, Affine cipher. 

2010 Mathematics Subject Classifications: 11T71 (14G50), 06F25 (12J15), 11A41, 53B05, 

14R05. 

1 Introduction 

The aim of Cryptography is to secure the transmission between the sender and the recipient. 

Securing information comes at many levels such that [1]: 

• Confidentiality: Only the recipient (and possibly the sender) can understand the 

information transmitted, 

• Integrity: Transmitted information has not been altered during its journey, 

• Authentication: This is the act of proving an assertion, such as the identity of a computer 

system user, 

• Non-Repudiation: It is the assurance that sender cannot deny the validity of information, 

• Access Control: Only authorized people can access the information. 

Confidentiality has long been obtained thanks to the knowledge of a secret common to the 

interlocutors (symmetric cryptography or secret key). The major disadvantage of this type of 

cryptography lies in the needing for a prior physical meeting between the interlocutors. So that, 

they agree on a secret allows them to communicate safely as reference [2]. The other aspects of 

security do not appear until much later with the advent of public key cryptography, which makes 

it possible to overcome the previous constraint.  

A message M is a sequence of symbols out of an alphabet Σ [2, 3]. In cryptography, the 

encoding of message is called encrypting or ciphering. In the framework considered in this paper, 

encrypting will be done using a function E and a key K, which is itself a finite sequence of 

symbols out of an alphabet, usually but not necessarily the same as the message alphabet Σ. 

In the current state of things such as encrypted multimedia data, mainly images and also text 

files are represented with extensions takes as pixels dimension and 8-bit characters. One can find 

a one-to-one function of these values and the elements of the set ℤ/256ℤ. In other words, the 

ciphering algorithms take results as modulo 256 values to size the images and the ciphered texts.  

Then, the message alphabet [2] Σ is equal to a set Σ = {0, 1, 2, ..., 255}, and it is equivalent 

to the ring ℤ256 but, unfortunately, ℤ256 contains many zero-divisors. This ring is not 

recommended for use in cryptography, like, we will see during this paper. 
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With a small adjustment in our message alphabet Σ, we can introduce a new alphabet  

Σ1
* = {1, 2, ..., 256} or a set, and it’s equivalent to the ring ℤ257 −{0}, we significantly improve 

the robustness of these cryptosystem algorithms by introducing the number of 257 instead 

of 256. 

2 Integral domain and field 

These are two special kinds of ring [4, 5, 6]:  

• If a, b are two ring elements with a, b ≠ 0 but ab = 0 then a and b are called zero-

divisors. In the ring ℤ256 we have 64 * 4 = 0 and so 64 and 4 are zero-divisors. More 

generally, if n is not prime then ℤn contains zero-divisors. 

• An integral domain is a commutative ring with an identity (1 ≠ 0) with no zero-divisors. 

That is ab = 0 ⇒ a = 0 or b = 0. The ring ℤ is an integral domain. 

A field is a commutative ring with identity (1 ≠ 0) in which every non-zero element has a 

multiplicative inverse. The rings ℚ, ℝ, ℂ are fields. If a, b are elements of a field with ab = 0, 

then if a ≠ 0 it has an inverse a −1 and so multiplying both sides by this gives b = 0.  

Hence there are no zero-divisors and we have: Every field is an integral domain. 

In mathematics, a finite field or Galois field is the set �p of mod-p remainders, where p is a 

given prime number. Here, as in ℤp, the set of elements is ℝp = {0, 1, ..., p − 1}, and the operation 

⊕ is (mod p) addition. The multiplicative operation ∗ is (mod p) multiplication, i.e., multiply 

integers as usual and then take the remainder after division by p. 
 

Theorem 1. Suppose that n is a positive integer. Then the commutative ring  

ℤ/nℤ : = {0, 1, 2, ..., (n − 1)} [4, 5, 6] is a field if and only if n is a prime number. Addition in 

this field is defined as adding a and b and then remainder (mod p). Multiplication is defined as 

multiplying a and b (mod p). 
 

Theorem 2. Every finite integral domain is a field. 

3 The role of prime 257 

257 is a prime number. In Table 1 is given a list of all primes less than 260 [7, 8]. 

 

 A B C D E F G H 

A 2 3 5 7 11 13 17 19 

B 23 29 31 37 41 43 47 53 

C 59 61 67 71 73 79 83 89 

D 97 101 103 107 109 113 127 131 

E 137 139 149 151 157 163 167 173 

F 179 181 191 193 197 199 211 223 

G 227 229 233 239 241 251 257 263 

Table 1. All primes less than 260 
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In general, ℤn has exactly n elements:  ℤ/nℤ = {0, 1, …, n − 1}. 
 

Theorem 3 ([7, 8]). Suppose that n is a positive integer. Then, the commutative ring ℤn = ℤ/nℤ is 

a field if n is a prime number. Conversely, if ℤn is a field, this implies that n is a prime number. 

ℤ257 is a field with elements which are taking values from 0 to 256. They are nonzero elements 

(the non-zero elements of 257 are the values from 1 to 256) and they are invertible. The inverse 

of 256 modulo 257 also equals to 256. 

One have already a message alphabet Σ equal to a set Σ = {0, 1, 2, ..., 255}. 

We can find a bijective function F between the non-zero values of 257 which are the numbers 

from 1 to 256 and the elements of the set of ℤ / 256 ℤ. 

*: / 256 ( / 257 )

( ) , 0

(0) 256

F

F i i i

F

→

= ∀ ≠


=

ℤ ℤ ℤ ℤ

 

4 Affine cipher 

An example of a cryptosystem which can benefit from this asset is the multiplicative Caesar 

cryptosystem or the affine encryption like in reference [1].  

The affine encryption has the following function: 

  E(x) = ax + b (mod 256), (2a) 

such that a, b, x are integers and E is an affine function. 

4.1 Adaptation of affine cipher in our case 

The principle encryption function is 

 E(x) = a * x + b (mod 257), (2b) 

where a, b are keys for the affine cipher while x is a plaintext value [1]. 

4.2 Results and interpretations 

To validate the affine encryption, we take different values of a, b. In addition, we are working 

on grayscale images of 256 × 256 pixels, where each pixel can take a value between 0 and 255. 

We choose the ‘Cameraman’ and ‘Lena’ images in this dimension. 

From Figures 1 and 2 it is seen that the affine encryption with modulo 257 makes a greater 

confusion in the plaintext image. 

4.2.1 Entropy 

Claude Shannon defined a function which is called as Shannon's entropy [9]. It is a mathematical 

function that corresponds to the amount of information contained in an information source. 

Entropy indicates, then, the amount of information necessary for the receiver to be able to 

unambiguously determine what the source has transmitted. 

 

 



217 

  

 (a) (b) 

  

 (c) (d) 

 

 (a) (b) 

 

 (c) (d) 

Figure 1. ‘Cameraman’ Image: 

(a) Plaintext image, 

(b) Encryption image with (a = 137, b = 0), 

(c) Encryption image with (a = 97, b = 241), 

(d) Encryption image with (a = 88, b = 120). 

 

Fugure 2. ‘Lena’ Image: 

(a) Plaintext image, 

(b) Encryption image with (a = 137, b = 0), 

(c) Encryption image with (a = 97, b = 241), 

(d) Encryption image with (a = 88, b = 120). 

For a source, which is a wide apart random variable X with n symbols, each symbol �� having 

a probability �� of appearing, the entropy H of the source X is given by 

 2

1

( ) .log ( )
n

i i

i

H x P P
=

= − ,  (3a) 

we put 

 i
i

k
P

n
= ,  (3b) 

where � varies from 0 to 255, 	 is the number of values generated (n = 256 * 256 = 65536), and 

ki corresponding to the frequency of each number �. 

In general, we use a logarithm with base 2 because the entropy has the units of bit/symbol. 

The bits symbolize the probable achievements of the random variable X.  

Let us consider a source consisting of an alphabet of 256 characters. If these characters are 

equiprobable, the entropy associated with each character is log2(256) = log2(28) = 8 bits (i.e. it 

takes 8 bits to transmit a character).  

The ideal is to find the entropy of the encrypted image that approaches a source so that the 

source delivers equiprobable characters). 

According to encryption function (Tables 2 and 3), the mean entropy of the encrypted 

‘Cameraman’ image is 7.0062 bits (which corresponds to  99.95% of the entropy of the plaintext 

image) while the entropy of the encrypted ‘Lena’ image is 7.7452 bits (which corresponds to 

99.93% of the entropy of the plain text image).  

     



218 

Encryption 
key Plaintext 

image 
Ciphering 

image 
a b 

137 0 

7.0097 

7.0097 

97 241 7.0087 

88 120 7.0002 
 

Encryption 
key Plaintext 

image 
Ciphering 

image 
a b 

137 0  

7.7502 

 

7.7502 

97 241 7.7441 

88 120 7.7413 
 

Table 2. Entropy for ‘Cameraman’ image Table 3. Entropy for ‘Lena’ image 

The cipher-text has completely the same letter frequencies as the underlying plaintext. That 

is to say that the cipher may be identified as a transposition in lots of situations by the close 

resemblance of its letter statistics with the letter frequencies of the underlying language. 

4.2.2 Histogram of images 

For a monochrome image (it means that just with one component), the histogram is determined 

as a discrete function, which associates to each intensity value the number of pixels taking this 

value. Hence, the histogram is determined by counting the number of pixels for each intensity of 

the image. After that, the histogram can be seen as a probability density. Histograms are resistive 

to a number of transformations on the image of reference [9]. They are invariant to rotations, 

translations, and a lesser improve for changing in the perspective with scale.  

  
 (a) (b)  

  
 (c)  (d) 

 
 (a) (b)  

 
 (c) (d)  

Figure 3. ‘Cameraman’ image: 

(a) Plaintext image, 

(b) Encryption image with (a = 137, b = 0), 

(c) Encryption image with (a = 97, b = 241), 

(d) Encryption image with (a = 88, b = 120). 

Figure 4. ‘Lena’ image: 

(a) Plaintext image, 

(b) Encryption image with (a = 137, b = 0), 

(c) Encryption image with (a = 97, b = 241), 

(d) Encryption image with (a = 88, b = 120). 
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We can clearly see that the plaintext image differs significantly from the corresponding 

encrypted image by referring to the results obtained (Figures 3 and 4).  

Additionally, the histogram of the encrypted image is fairly uniform which makes it difficult 

to extract the statistical nature pixels from this image. 

4.2.3 Adjacent pixel correlation 

In the theory of probability and statistics, intensity of the link can exist between these variables 

to study the correlation between two random variables or numerical statistics. The link is an 

affine relationship, it is a linear regression. If we would like to give a numerical illustrate, we 

can calculate the correlation coefficient between two series of the same length (typical case: a 

regression).  

The following tables of values are assumed as follows: X(x1, …, xn) and Y(y1, …, yn) and for 

each of the two series. A measure of the correlation is obtained by calculating the Bravais–

Pearson linear correlation coefficient given in reference [9]. To know the correlation coefficient 

linking of these two series, we carry out the following equation: 

 
cov( , )

( , )
( ) ( )

X Y
Coeff X Y

D X D Y
= ,  (4) 

The covariance between x and y is given by: 

 
1

1
cov( , ) (( ( )).( ( )))

N

i i

i

X Y X E X Y E Y
N =

= − − . (5) 

The mean of X and Y are defined, respectively:  

 
1 1

1 1
( ) , ( )

N N

i i

i i

E X X E Y Y
N N= =

= =  . (6) 

Besides, standard deviation of X and Y are obtained, respectively: 

 2 2

1 1

1 1
( ) ( ( )) , ( ) ( ( ))

N N

i i

i i

D X X E X D Y Y E Y
N N= =

= − = −  . (7) 

The correlation coefficient is defined between −1 and 1. The intermediate values provide 

information on the degree of linear dependence between the two variables. The closer coefficient 

is to the extreme values −1 or 1, the stronger the correlation between the variables; the term 

"highly correlated" is simply used to describe the two variables. A correlation equal to 0 means 

that the variables are not correlated. 

To test the correlation coefficient, we can choose all pairs of two adjacent pixels not only 

the clear image but also the encrypted image. 

The four subfigures of Figure 5 represent the correlation between two horizontally adjacent 

pixels of the clear and ciphering images. It is seen that the neighbouring pixels have a strong 

correlation in the clear ‘Cameraman’ image (Coeff = 0.93338), while there is average correlation 

(Coeff = 0.079164) in the cipher. 

This weak correlation between the two neighbouring pixels makes it difficult to assault our 

cryptography system in the encrypted image. 
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 (a) (b) 

 
 (c)  (d) 

 
  (a)  (b) 

 
 (c) (d) 

Figure 5. ‘Cameraman’ image: 

(a) Plaintext image, 

(b) Encryption image with (a = 137, b = 0), 

(c) Encryption image with (a = 97, b = 241), 

(d) Encryption image with (a = 88, b = 120). 

Figure 6. ‘Lena’ image: 

(a) Plaintext image, 

(b) Encryption image with (a = 137, b = 0), 

(c) Encryption image with (a = 97, b = 241), 

(d) Encryption image with (a = 88, b = 120). 

Encryption 
key Plaintext 

image 
Ciphering 

image 
a b 

137 0 

0.93338 

0.10536 

97 241 0.047386 

88 120 0.084746 
 

Encryption 
key Plaintext 

image 
Ciphering 

image 
a b 

137 0 

0.99741 

0.58774 

97 241 0.58056 

88 120 0.59449 
 

Table 4. Correlation coefficient  

for the ‘Cameraman’ image 

Table 5. Correlation coefficient  

for the ‘Cameraman’ image 

In addition, it is easily seen that several straight lines can be adjusted to this cloud of points 

in the clear image but among all these straight lines, we can retain the one that enjoys a 

spectacular property-giving rise to a straight line of the form 
 =  
� +  � thus presenting a 

linear correlation.  

The four subfigures of Figure 6 represent the correlation between two horizontally adjacent 

pixels of the clear and ciphering image. It is seen that the neighbouring pixels in the clear ‘Lena’ 

image have a strong correlation (Coeff = 0.99741), while there is average correlation (Coeff = 
0.587596) in the cipher. 
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4.3 Deciphering function 

Let us consider 

 ( ) (mod 257)y E x ax b= = + .   

 ( ) (mod 257)
y b

x D y
a

−
= = . (8a) 

 
1 *( ) (mod 257)x a y b−= − . (8b) 

The inverse of a, is calculated by the extended Euclidean algorithm [1]. 

In the arithmetic and computer programming, the extended Euclidean algorithm also 

computes the greatest common divisor of integers a and 257 for the coefficients of Bézout’s 

identity [1, 10] (which are integers u and v) such that: 

 . 257 gcd( , 257) 1a u v a+ = = . (9) 

From (9) we get  

 1 (mod 257)au ≅ ,   

and it implies that u is the inverse of a for modulo 257. So, the deciphering function is given as 

follows: 

 *( (257 )) (mod 257)x u y b= + − . (10a) 

 . . *(257 ) (mod 257)x u y c c u b= + = − . (10b) 

5 Euler indicator function 

In number theory [4, 5, 10], Euler’s totient function counts the positive integers up to a given 

integer n that are relatively prime to n. It is written using the Greek letter ‘phi’ as φ(n) or ϕ(n), 

and may also be called Euler's phi function or Euler Indicator. In other words, it is the number 

of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. 

The integer k of this form is sometimes referred to as totatives of n.  

For n ∈ ℕ, φ(n) = card{k ∈ {1, …, n}, such as, gcd(n, k) = 1} 

For example, there are eight totatives of 24 (1, 5, 7, 11, 13, 17, 19, and 23), so ϕ(24) = 8. 
 

(1) If n = p, where p is prime number, then it is satisfied: 

 φ(p) = p – 1,    φ(1) = 1. (11a) 

(2) If n = pα for prime number p and exponent α, then it is satisfied: 

 φ(pα) = (p – 1).pα–1. (11b) 

n φ (n) 

256 = 28 φ(28) = (2 – 1).28–1 = 27 = 128 

257 257 is first, then φ(257) = 257 – 1 = 256 

The complexity of the affine encryption increases from (128 * 256) values (possible key values if 

we work with modulo 256) to (256 * 256) values (possible keys if we work with modulo 257). 
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6 Conclusion 

One can see in another way, that whole goal of this paper is to transform a finite set which 

contains zero-divisors to a set with no zero-divisors; which is an integral domain. It is clear that 

the fact of using 257 instead of 256, we double the capacity of the indicator of Euler. 

An example of a cryptosystem which can benefit from this asset is the multiplicative 

Caesar cryptosystem or the affine encryption. The complexity of the affine encryption key  

(E(x) = ax + b), such that a and b form the key, x is the plaintext value and E is the affine cipher) 

increases from (128 * 256) with possible key values if we work on modulo 256 to (256 * 256) 

values possible keys if we work with modulo 257. 

The idea based on this result, is to use the affine ciphers with the modulo 257, in any specific 

algorithm of ciphering and also one finishes with the decryption affine with the modulo 257 like 

an inverse permutation. This is to increase the security of the specific encryption algorithm and 

lengthen the 16-bits encryption key (8 bits for the value a, and 8 bits for the value b). 
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