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Abstract—In this paper, we focus on the two-user Gaussian
interference channel (GIC), and study the Han-Kobayashi (HK)
coding/decoding strategy with the objective of designing low-
density parity-check (LDPC) codes. A code optimization algo-
rithm is proposed which adopts a random perturbation technique
via tracking the average mutual information. The degree distri-
bution optimization and convergence threshold computation are
carried out for strong and weak interference channels, employing
binary phase-shift keying (BPSK). Under strong interference, it
is observed that optimized codes operate close to the capacity
boundary. For the case of weak interference, it is shown that via
the newly designed codes, a nontrivial rate pair is achievable,
which is not attainable by single user codes with time-sharing.
Performance of the designed LDPC codes are also studied for
finite block lengths through simulations of specific codes picked
from the optimized degree distributions.

I. INTRODUCTION

Full characterization of the capacity region of the two-user
GIC is an open problem for the general case, and only inner
and outer bounds are available in the literature. The best
reported achievable rate region to date is due to Han and
Kobayashi (HK) [1]. Despite the superiority of the rate region,
there is no work on exploring explicit and implementable
channel codes adopting this coding and decoding scheme
in the current literature. With this motivation, in this paper,
we study the design and performance of low-density parity-
check (LDPC) over GICs utilizing the HK strategy.

In the current literature, LDPC codes have been successfully
optimized for multi-user channels, where promising results
are obtained for the two-user equal gain multiple-access-
channel (MAC) [2], Gaussian broadcast channel [3], relay
channel [4], and symmetric two-user GIC [5] where identical
distributions for both messages are used without employing
the HK coding/decoding strategy. In this paper, we investigate
the performance of irregular LDPC codes over the two-user
GIC employing the HK coding/decoding scheme with fixed
channel gains and finite constellations. In the proposed HK
scheme information of each transmitter is split into private
and public parts which are encoded using separate LDPC
codes. The encoded bits are mapped to specific constellation
points and the resulting signals are superimposed to generate
the transmitted signal. At the receiver side, public messages
and private message of the intended user are decoded con-
currently utilizing an iterative joint decoder. It is shown that
the proposed joint decoder enjoys a symmetry property of
the exchanged soft information which plays a key role in

simplifying the mutual information calculations.
A code optimization algorithm is proposed based on random

perturbations. The algorithm can be considered as a specific
instance of differential evolution technique of [6], which
is a robust and effective method. The optimization steps
through random perturbations starting from admissible degree
distributions [5]. The convergence of ensembles is verified
by tracking the mutual information evolution utilizing Monte-
Carlo simulations.

Computation of HK achievable rate region is prohibitively
difficult since full characterization of the rate region requires
optimization over numerous random variables with large car-
dinalities. Therefore, in this paper, instead of computing the
entire region, a subregion [7] is computed with a smaller
complexity, where a finite number of power allocations are
considered and no time sharing (TS) is utilized.

Having implemented the HK strategy, we carry out the
code optimization for the two-user GIC through examples
considering strong and weak interference. For comparison
purposes we will use single user codes with TS implemented
with two different power constraints. The first one is naive
TS motivated by practical limitations on the power amplifiers,
for which we have individual power constraints for the two
users for each transmitted symbol. The second one is non-
naive TS where the users can “pool” their power resources
and increase their individual power levels for certain fraction
of the transmission while keeping the total average power
over the entire codeword under a certain value [8]. Promising
results are obtained under strong interference, where a rate
pair very close to the capacity boundary is achieved. Under
weak interference, it is demonstrated that a non-trivial point,
which is not achievable with the point-to-point (p2p) code
used with TS, is attainable. In our examples, we also evaluate
and compare the performance of optimal p2p codes with the
ones optimized for the GIC, and demonstrate that significant
improvements are possible. We also provide simulation results
with specific finite-length codes picked from the optimized
code ensembles.

The rest of the paper is organized as follows. In Section II,
system model of the two-user GIC is described. In Section III,
HK coding and decoding schemes are explained. In Section
IV, the proposed code optimization algorithm is described. In
Section V, performance of p2p and optimized LDPC codes
are investigated, where finite block length code simulations
are also included. Finally, Section VI concludes the paper.
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Fig. 1. Two-user GIC block diagram.

II. SYSTEM MODEL

Discrete time two-user GIC system model is illustrated in
Fig. 1. Channel outputs at the two receivers can be written as

Y1 = h11X1 + h21X2 + Z1,
Y2 = h12X1 + h22X2 + Z2,

where hij is the channel gain from the user i to the receiver
j. Z1 and Z2 are independent and identically distributed
(i.i.d.) circularly symmetric Gaussian noise samples with zero
mean and N0

2 variance per dimension. Under per user power
constraint, X1 and X2 are the transmitted signals with indi-
vidual power constraints of P1 and P2, respectively; that is,
E{|Xi|2} ≤ Pi (i = 1, 2). For the case with a total power
constraint, the transmitted signals satisfy

1

n

n∑
k=1

(P1,k + P2,k) ≤ P1 + P2,

where k and n are the index of the transmitted bit and
transmission length, respectively. Note that under the above
per user power constraint, only a naive TS is possible while
with the total power constraint we can employ non-naive
TS [8]. Signal-to-noise-ratios (SNRs) and interference-to-
noise-ratios (INRs) at receiver i are defined as

SNRi =
|hii|2Pi
N0

, INRi =
|hji|2Pj
N0

, i, j = 1, 2, i 6= j.

Based on the interference to signal level (ai = INRi

SNRi
) at

the receivers, GICs can be categorized as strong (ai > 1),
weak (ai < 1), and mixed (ai > 1, aj < 1) GICs, where
i 6= j and i, j = 1, 2. For the case of a symmetric GIC, we
have

h11 = h22, h12 = h21,
SNR1 = SNR2 = SNR,
INR1 = INR2 = INR.

III. CODING AND DECODING SCHEMES

A. Encoding

Fig. 2 shows the block diagram of the transmitter incorporat-
ing the HK coding scheme. As shown in the figure, message of
each transmitter is split into public (W ) and private (U ) parts,
encoded with separate LDPC codes. The encoded private and
public messages are then modulated and superimposed at user
i with powers αPi and (1 − α)Pi, respectively, to form the

overall signal to be transmitted, that is,

Xi =
√
αiPi(1− 2cui

) +
√

(1− αi)Pi(1− 2cwi
), i = 1, 2,

where cwi
and cui

are coded bits of public and private
messages of user i, respectively. In this paper we superimpose
two signals with standard addition; however, it is also possible
to consider other alternatives. For instance, superimposing of
two signals can be done in the “code” domain (which may be
the proper choice in the case of binary input channels).

LDPC 

Encoder

LDPC 

Encoder

BPSK Mod.

BPSK Mod.
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��

��

Fig. 2. Generation of the transmitted signal in the HK coding scheme.

B. Decoding

At the receiver side, the public messages and the private
message of the desired user are decoded employing joint
decoding (JD) with parallel scheduling [2], as illustrated in
Fig. 3. Under parallel JD, decoding of the messages are
performed concurrently and in rounds. Each round starts with
computing log-likelihood ratios (LLRs) fed to the individual
decoders, where each decoder runs for several iterations utiliz-
ing belief propagation (BP) algorithm [9]. Updated LLRs are
then passed from variable nodes to intermediate nodes called
state nodes which completes the round. Under BP, LLR of the
ith coded bit of message j, denoted as cji , is defined as

L(cji ) = log

(
P (cji = 0|y)

P (cji = 1|y)

)
.

Considering parallel scheduling, upon start of each iteration,
LLR of the ith coded bit provided to individual decoder j is
computed at the state nodes by marginalization as follows

L(cji ) = log

(∑
Ai∈Sj+

i
p(y|Ai)p(Ai)∑

Ai∈Sj−
i
p(y|Ai)p(Ai)

)
,

where Ai is the vector comprising of the ith coded bits of all
the (public and private) codewords, i.e.,

Ai = {xu1i
, xw1i

, xu2i
, xw2i

}.

 

   

 

 

Fig. 3. JD block diagram (i, p, q = 1, 2, p 6= q).



Sj+i and Sj−i denote the subset of the ith bit of codewords
corresponding to cji = 0 and cji = 1, respectively. P (Ai) is
the probability of the vector Ai whose value is determined by
individual decoder outputs and gets updated at each iteration.
Considering the jth receiver, uk (k 6= j) is not decoded, hence,
the corresponding component in P (Ai) does not get updated
and remains constant throughout the iterations.

Symmetry property is defined for the exchanged information
(log-likelihood ratio, L) in iterative decoding as follows

L = ln
p(L)

p(−L)
. (1)

Here, we state following theorem without proof (see [7] for the
proof) for all exchanged LLRs under joint decoding adopting
parallel scheduling.

Theorem 1. For a binary-input memoryless output symmetric
channel, the probability-density-function (PDF) of the LLRs
exchanged within the factor graph of a joint decoder with
parallel scheduling enjoys the symmetry condition in (1).

IV. LDPC CODE OPTIMIZATION

A. Preliminaries

The objective in this section is to develop an optimiza-
tion method for LDPC code ensembles over GICs. In this
paper, irregular LDPC codes are adopted for transmission.
Following the notation in [10], an ensemble of irregular LDPC
codes (λ, ρ) is described with λ(x) and ρ(x), defined as

λ(x) =

dv∑
i=2

λix
i−1 and ρ(x) =

dc∑
i=2

ρix
i−1

where dv and dc are maximum degrees of variable and check
nodes, respectively, and the design rate of the LDPC code is
given by

r = 1−
∑
i ρi/i∑
i λi/i

.

Density evolution is the most accurate available tool to
calculate an ensemble’s decoding threshold, which tracks the
PDF of the exchanged LLRs between variable and check
nodes analytically. The difficulty with this method in our
case is that under joint decoding, non-linearity of update
rule at the state node makes the task of obtaining the PDFs
extremely difficult. EXIT (Extrinsic Information Transfer)
chart analysis is an alternate method which tracks the mutual
information evolution between the LLRs and transmitted bits
under Gaussian assumption for the PDFs. However, in our
work, we observed that this method fails for GICs adopting
joint decoding approach. In other words, for some ranges of
channel parameters, there is a big gap between the thresholds
obtained with Gaussian assumption and ones observed through
finite block length code simulations, that is why, we do not
use this assumption in our analysis.

In this paper, mutual information evolution is tracked with-
out any Gaussian assumption on the exchanged LLRs. To this
end, we benefit from Monte-Carlo simulations and run the

decoders for a large number of LLR realizations. Armed with
symmetry property (1), it is easy to show that the mutual
information between the exchanged information in the joint
decoder and transmitted bits can be calculated as [11]

I(L;X) = 1− E{log2(1 + e−L)}

≈ 1− 1

N

N∑
n=1

log2(1 + e−xn.Ln),

where xn is the nth transmitted symbol. In other words,
the mutual information can be tracked and obtained readily
without requiring the analytical PDFs of the LLRs.

B. Proposed Code Optimization Method

LDPC code design is an optimization problem with non-
linear constraints in general and can be cast using different
cost functions such as the threshold or rate maximization.
In this paper, we opt for rate maximization under specified
channel parameters. The proposed method can be considered
as a simple implementation of differential evolution (DE) [6]
which is a heuristic approach successfully adopted for code op-
timization over various channels in the previous literature [10].
The proposed optimization algorithm is based on a random
perturbation technique [12] starting with an initial admissible
(λ, ρ) pair [5]. Without loss of generality and to simplify the
exposition, it is assumed that check node degree distribution
is a singleton throughout the paper, i.e. ρ(x) = xdc−1, where
dc is determined via an exhaustive search. At each iteration,
a perturbation vector e is added to the initial variable node
degree distribution (λ(x)). In order to have a valid distribution,
the following constraints should be met∑

i

λi + ei = 1, (2)

0 ≤ λi + ei ≤ 1, 2 ≤ i ≤ dv, (3)

To satisfy a predetermined increase (∆) in the code rate, which
is a design parameter, we have

1− 1

dc

1∑
i
λi+ei
i

= r0 + ∆

which implies∑
i

ei
i

=
1

dc

∆

(1− r0)2 −∆(1− r0)
. (4)

In other words, the perturbation vector should satisfy
(2), (3), (4). The new degree distribution will replace the
initial degree distribution if it is admissible, else it is dismissed
and a new iteration is performed. The process is stopped if a
new admissible degree distribution cannot be found after a
predetermined number of iterations.

V. EXAMPLES OF LDPC CODES OVER GICS

In this section, we investigate the performance of irregular
LDPC codes adopted for transmission over the two-user GIC
implementing the HK coding/decoding strategy. Two scenarios
with BPSK modulation and fixed channel gains are considered.



In the examples, we optimize the LDPC codes jointly with
the goal of maximizing the sum rate. The achieved rate
pairs are then compared to the best achievable rate pairs
employing optimized binary-input additive-white-Gaussian-
noise (BI-AWGN) codes. EXIT chart analysis [13] is utilized
to optimize the degree distributions for BI-AWGN codes (i.e.,
to generate the p2p codes to provide a benchmark). To perform
the optimization, we consider a singleton check node degree
distribution which is determined via an exhaustive search.
Inspired by [10], nonzero variable node degrees are limited
to {2,3,4}, the maximum degree dv (50), and a few degrees
in-between. Specifically, in our paper we select these degrees
as {2,3,4,9,10,19,20,49,50}.

A. Scenario I – Strong GIC

In this example, all messages are public since the interfering
signal is strong and can be decoded completely at the receiver
side. we consider an asymmetric rate pair whose sum rate is
maximized with the following constraint

R1 = R2 +K,

where K is a constant. The channel parameters are given in
Fig. 4. Specifically, we aim to get close to one of the corner
points of the capacity region. As a result, K is set to 0.05
and fixed throughout the code optimization procedure. The
algorithm is initialized with the rate pair (0.2, 0.15). Optimized
degree distributions are given in Table I, where superscripts P
and O refer to p2p and optimized degree profiles, respectively.
It can be observed that the optimized achieved rate pair (0.278,
0.228) is superior to the rate pair (0.269, 0.219) obtained by the
best p2p codes. In addition, the achieved rate pair outperforms
even the non-naive time-sharing scheme. It is also noted that
the achieved point is 0.31 dB away from the capacity boundary
corresponding to BPSK signaling (estimated by increasing the
noise variance and maintaining the INR

SNR ratio).
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Fig. 4. Scenario I: regions and achieved points for strong GIC.

B. Scenario II – Weak GIC

For this instance, a symmetric weak GIC is considered
for which the channel parameters are as given in Fig. 5.

The signaling is named as superimposed BPSK since the
transmitted signal for each user is a combination of public
and private messages. Since interfering signals cannot be
decoded completely, portion of the power is allocated to
private messages. To address the power allocation problem,
the following optimization is considered

max
α1,α2

R1 +R2

subject to R1 = R2 +K,
0 ≤ αi ≤ 1, i = 1, 2,

(5)

where K is set to 0.15. It should be noted that in solving
the optimization (5), individual rate (private and public) con-
straints should be satisfied [1, (3.2)-(3.15)]. Having obtained
power and rate assignments, three LDPC code ensembles (i.e.,
for encoding U1, W1, and W2 considering receiver 1) are
optimized. The initial rates used in code optimization are
as follows: RU1

= 0.125, RW1
= 0.205, RW2

= 0.18. The
resulting degree distributions are given in Table II. It can be
shown that the optimized achieved rate pair (0.367,0.217) is
higher than the rate pair (0.36, 0.209) obtained by the best
p2p codes. Further, the achieved rate pair is better than the
one obtained with the single user code utilizing naive TS. It
is also clear that optimized degree distributions exhibit better
performance than optimized p2p pairs.
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Fig. 5. Scenario III: regions and achieved points for weak GIC.

C. Finite Block Length Code Simulations

In this section, we evaluate the performance of the opti-
mized LDPC codes through finite block length simulations. We
consider codes with block lengths 50k and set the maximum
number of decoding iterations to 500. Fig. 6 shows the
decoding results at receiver 1. For clarity of presentation, we
include decoding result of the public or private messages with
the worst error rates (i.e., the bottleneck), instead of giving the
results of all the cases (could be up to six different decoding
results in the general case). Considering bit-error-rate (BER)
of 10−4 as the reliable transmission, it can be observed that
decoding results are within 0.3 dB of the decoding thresholds.



TABLE I
OPTIMIZED DEGREE DISTRIBUTIONS (ρW1P

(x) = x4 , ρW1O
(x) = x4 , ρW2P

(x) = x4 , ρW2O
(x) = x3).

λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50
W1P 0.2759 0.2502 0.1001 0.1089 0.0502 0.1706 0.0086 0.0247 0.0108
W2P 0.2575 0.2490 0.0619 0.1320 0.0768 0.0586 0.0037 0.0494 0.1111
W1O 0.3106 0.1901 0.1065 0.1691 0.0809 0.0337 0.0297 0.0033 0.0761
W2O 0.3815 0.2999 0.0280 0.1453 0.0719 0.0340 0.0074 0.0093 0.0227

TABLE II
OPTIMIZED DEGREE DISTRIBUTIONS (ρU1P

(x) = ρU1O
(x) = x4, ρW1P

(x) = ρW1O
(x) = x3, ρW2P

(x) = x4, ρW2O
(x) = x3).

λ2 λ3 λ4 λ9 λ10 λ19 λ20 λ49 λ50
U1P 0.2659 0.2455 0.0512 0.1661 0.0542 0.0203 0.0415 0.0546 0.1007
W1P 0.3488 0.1237 0.2267 0.0161 0.0912 0.0299 0.0422 0.0971 0.0243
W2P 0.2386 0.2859 0.0504 0.0920 0.0892 0.0326 0.0176 0.1183 0.0754
U1O 0.3151 0.0566 0.2480 0.0523 0.0213 0.1759 0.0288 0.0405 0.0615
W1O 0.3642 0.1226 0.2030 0.0222 0.0460 0.0163 0.1385 0.0370 0.0502
W2O 0.4309 0.1642 0.1127 0.0969 0.0481 0.0384 0.0404 0.0578 0.0106
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Fig. 6. Finite block length code decoding results.

VI. CONCLUSIONS

In this paper, the Han-Kobayashi (HK) coding/decoding
strategy is implemented for the two-user Gaussian interference
channel (GIC) considering fixed channel gains and finite
constellations. A robust method is proposed for LDPC code
optimization utilizing a random perturbation method. Perfor-
mance of the designed LDPC codes are examined for strong
and weak interference levels through examples. Under strong
GIC, capacity approaching codes are designed which beat even
the non-naive TS rate region. Under weak interference, it is
observed that optimized codes beat the naive TS region (with
Gaussian signaling) and operate close to the non-naive TS
region boundary. We also note that the designed codes improve
consistently on the codes designed for p2p channels (used with
the same encoding/decoding procedure). Simulation results are
also provided using codes picked from the designed LDPC
code ensembles to verify the asymptotic results.
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