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Abstract: Recently, two-dimensional (2D) transition metal carbides and nitrides known as MXenes, have gained a lot
of attention because of their tunable electronic and magnetic properties depending on surface functionalization. In the
present work, the structural, electronic, and magnetic properties of both T and H phases of bare Ti2 C and fully surface
terminated Ti2 CT2 (T = -F, = O, -OH) are calculated using a set of first principles calculations. The ground state
structures of Ti2 CT2 are computed in two and four different configurations for both H and T phases, respectively. We
demonstrate that while H phase of Ti2 C exhibits half-metallic behavior with magnetic moments of 2 µB per formula
unit, it displays metallic behavior with magnetic moments of 1.27 µB , 0.25 µB per formula unit, and semiconductor
behavior with 0.35 eV band gap in -F, -OH, and =O surface functionalization, respectively. We also show that while
T phase of Ti2 C exhibits metallic behavior with magnetic moment of 1.89 µB per formula unit, it stays in metallic
nonmagnetic behavior in both -F and -OH. Meanwhile, it displays semiconductor behavior with 0.25 eV band gap in -O
surface functionalization. We expect that our results can advance the future applications of MXenes from energy storage
to spintronic.
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1. Introduction
Two-dimensional (2D) freestanding materials show unique properties that differ from those of their conventional
bulk (3D) precursors because they lack a degree of freedom. The first 2D material, graphene, was discovered
in 2004 by mechanical exfoliation method [1, 2]. This method is the most economical way to achieve single
layer material. The alternative of 2D materials [3–6], such as hexagonal BN [7], transition metal oxides [8] and
transition metal dichalcogenides (TMDs) [9, 10] have also been synthesized by the same method. Naguib et
al. reported that they obtained a compose of a few Ti3C2 layers and canonical scrolls produced by exfoliation
of Ti3AlC2 in hydrofluoric acid [11] at room temperature. These new 2D materials occur when Al atoms are
extracted from Ti3AlC2 , which was proposed to be called ”MXene” to emphasize its graphene-like morphology.
MXenes has just recently entered the research area as a new member of 2D materials family. Their general
formula consist of Mn+1AXn (n=1,2,3), M, A, and X represent early transition metal, A-group elements, and
C and/or N, respectively. They were produced by selectively etching ”A” layers out of the MAX bulk. After
their exfoliation from the MAX phase, MXenes are fully surface-terminated by functionalized groups.
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After the synthesis of Ti3C2 , almost 30 MXenes have been also experimentally discovered, and dozens
have been theoretically predicted [12–15] The exfoliation process of MAX phases is still the main challenge
of getting 2D monolayer MXenes. Lei et al. considered three different structures which are monolayer
alpha -Mo2C, 1T-Mo2C, and 2H -Mo2C [16]. Their calculations indicate that 2H -Mo2C is determined to
be energetically most favorable among these three. To our knowledge, they put forward the physical and
thermal properties of 2H -Mo2C in the literature for the first time. Motivated by the study, we investigated
the electronic and magnetic properties of bare Ti2C and fully surface terminated Ti2CT2 for both H and T
phases.

Surface functionalization is a critical issue on electronic, magnetic, and their tunable properties of
MXenes. There are several studies that can be cited as examples: Champagne et al. [17] investigated
electronic properties and dynamical stabilities, both bare V2C and fully surface terminated V2CT2 from
first-principles calculations. They showed that pristine V2C shows metallic behavior and keeps its metallic
behavior in all surface groups. Si et al. [18] showed intrinsic half-metallicity in bare Cr2C due to mobility of d
electrons of Cr atoms. They also showed a ferromagnetic-antiferromagnetic transition which stems from surface
functionalization groups (F, OH, H, or Cl), band gap of the semiconductor can be controlled by changing the
type of functional groups. The effect of surface functionalization groups was also investigated by Zhang et al.
[19]. They reported that surface functionalization groups are crucially important considering their unsaturated
surface which allows electron-phonon interaction.

2. Computational methodology

The structural, electronic, and magnetic properties of all the considered systems were performed by first-
principles calculations using density functional theory (DFT), as implemented in the Vienna ab initio simulation
package (VASP) code [20, 21]. The exchange-correlation potential energies were described by the generalized
gradient approximation (GGA) [22] of Perdew-Burke-Ernzerhof (PBE) [23] functional. The density functional
theory (DFT), D2 method for Grimme, was used for the GGA function with van der Waals (vdW) correction
[24].

After testing of significant input parameters, structural calculations were performed by using the following
parameters: The energy cutoff value for plane-wave basis set was taken to be 600 eV. The total energy
was minimized until the energy between consecutive steps in the iterations variation was less than 10−5 eV.
Hellmann–Feynman force convergence criterion was taken to be 10−5 eV. Fermi level Gaussian smearing factor
was taken as 0.05 eV. 16×16×1 k-point grid in Γ -centered mesh for the primitive unit cell was selected for the
Brillouin zone (BZ) integration. The vacuum spacing was selected 20 Å between two adjacent layers to avoid
interactions between the periodic images of slabs in the the z-direction. Ti, C, F, O, and H atoms were treated
as 3s2 3p6 3d3 4s1 , 2s2 2p2 , 2s22p5 , 2s22p4 , and 1s1 as valence electrons, respectively.

3. Results
3.1. Structural properties

We started with fully relaxed geometry optimization of pristine H phase Ti2C. The ground state structure of
pristine H phase Ti2C is found to be hexagonal crystal structure as shown in Figure 1a. a = b = 3.05 Å are found
as equilibrium lattice parameters. To our knowledge, there is no report of performing the structural properties
of H phase Ti2C. After we got ground-state crystal structure of pristine Ti2C, we continued functionalization
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of Ti2C MXene structure with T = F,O,OH. We considered two different configurations of functional groups
for H phases: functionalized groups stay at the top site of Ti and C atoms shown respectively in Figures 1b
and 1c. Structural parameters and formation energies of these structures are given in Table 1.

H-phase

(a) (c)(b)

A
B B

A

Ti C T = O, F, OH

d

Figure 1. Systematic illustration of H phases of (a) pristine Ti2 C and surface terminated functionalization Ti2 CT2

MXene systems: top and side views of (b) MD - I and (c) MD - II, respectively. Titanium, carbon, and functional groups
represented in blue, brown, and red, respectively.

Formation energies are calculated to get the most stable configuration using the following formula:

∆Hf = Etot(Ti2CT2)− Etot(Ti2C)− Etot(T2), (1)

where Etot(Ti2CT2) ,Etot(Ti2C) , Etot(T2) total energy of fully surface terminated Ti2CT2 , total energy of
pristine Ti2C and total energy of F2 , O2 or (OH)2 , respectively. MXenes surfaces are assumed that there were
no remaining bond as pending [25]. The structural parameters and calculated formation energy are reported in
Tables 1 and 2.
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Table 1. Structural parameters and formation energies for unterminated H -Ti2 C and surface chemically functionalized
systems called MD-I and MD-II.

Model Lattice Parameter Thickness Magnetic moment Formation Energy
a (Å) d (Å) (µB) (eV)

H -Ti2C 3.05 2.47 2.00 0
H -Ti2CF2 MD-I 3.10 2.59 1.73 –11.21

MD-II 2.95 2.65 1.27 –13.40
H -Ti2CO2 MD-I 3.28 2.41 0.00 –11.22

MD-II 2.96 2.89 0.00 –15.23
H -Ti2C(OH)2 MD-I 3.12 2.585 1.33 –8.31

MD-II 3.00 2.58 0.25 –11.00

We used the same method in the computation of T phase Ti2C for calculating fully relaxed geometry
optimization as in the computation of H phase Ti2C. The ground-state structure of pristine T phase Ti2C is
also found to be hexagonal as shown in Figure 2a. The unit cell includes three atoms; two titanium and one
carbon are located at (1/3, 2/3, z), (2/3, 1/3, -z), and (0, 0, 0) on the Wyckoff sites. A, A ‘ , and B sites was
selected fcc and hcp sites located on the top of Ti atom and fcc site located on the top of C atom, respectively.
The equilibrium lattice parameters for T phase Ti2C is found a = b = 3.08 Å. The lattice parameter of T
phase Ti2C is also verified by the previous studies; a = 3.083 Å [26] and a = 3.078 Å [27]. Our results show
that while lattice parameters decreases, Ti–Ti atomic distance (thickness) increases. After we got ground-state
crystal structure of pristine T phase Ti2C, we continued functionalizing Ti2C MXene structure with T = F, O,
OH. To determine the ground state for T phase Ti2CT2 , we calculated formation energies with Equation 1 in
all functional groups which are listed in Table 2. Functionalization configurations are created according to the
position of surface groups. We introduced four configuration models. In model MD-I, two functionalized groups
are located on the top of the Ti atoms as shown in Figure 2b. In model MD-II, two functionalized groups are
positioned on the top of A hollow site as shown in Figure 2c while one functionalized group is positioned on the
top of A hollow site and second functionalized same type on the top of B hollow site in model MD-III as shown
in Figure 2d. Finally, in model MD-IV, two functionalized groups are positioned on the top of hollow site B as
shown in Figure 2e.

As seen in Tables 1 and 2, MD-II and MD-III configurations have the lowest formation energy for H and
T phases, respectively. Total energies of H and T phases are found as –24.20 eV and –25.39 eV per unit cell.
Clearly, T phase of Ti2C is the most stable. The structural stability of the H and T phases was estimated by
comparing their relative total energies. Clearly, relative total energy is 1.19 eV per unit cell and H -T phase
transition may possible. Further studies are needed to confirm this and it should be investigated deeply.

3.2. Electronic and magnetic properties

Having determined the ground-state structures of H and T phases of pristine Ti2C monolayers (MD-II and
MD-III were selected as ground-state for H and T phases, respectively) we focused on electronic and magnetic
properties. Bare MXenes show metallic character with high density of states because of transition metal atoms
have d- bonding near the Fermi level. Passivated from F, O, OH functional groups, the electronic properties
may change dramatically. All calculated electronic band structures are given along the high symmetry direction
as Γ , M, K.
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Figure 2. Systematic illustration of T phases of (a) bare Ti2 C and fully terminated functionalization Ti2 CT2 MXene
systems: top and side views of (b) MD-I, (c) MD-II, (d) MD-III, and (e) MD-IV, respectively. Titanium, carbon, and
functional groups represented in blue, brown, and red, respectively.

Table 2. Structural parameters and formation energies of MDI–MDIV configurations for pristine T-Ti2 C and chemically
functionalized systems.

Model Lattice Parameter Thickness Magnetic moment Formation Energy
a (Å) d (Å) (µB) (eV)

T-Ti2C 3.08 2.24 1.89 0
T-Ti2CF2 MD-I 3.19 2.19 0.00 –12.01

MD-II 2.97 2.43 0.03 –13.27
MD-III 3.05 2.29 0.07 –13.83
MD-IV 3.02 2.35 0.00 –13.61

T-Ti2CO2 MD-I 3.03 2.62 0.00 –16.14
MD-II 2.96 2.77 0.00 –14.37
MD-III 3.03 2.62 0.00 –16.16
MD-IV 3.01 2.67 0.00 –15.38

T-Ti2C(OH)2 MD-I 3.22 2.17 0.00 –9.05
MD-II 3.01 2.41 0.00 –10.87
MD-III 3.06 2.32 0.00 –11.21
MD-IV 3.05 2.35 0.00 –11.07

H phase of pristine Ti2C shows half-metallic behavior magnetic moments of 2 µB per formula unit in
Figure 3a. Terminated Ti2CT2 (T = F,OH), each F or OH group obtains one electron from Ti2C turn to
metallic character with magnetic moments of 1.27 µB and 0.25 µB per formula unit, respectively as shown in
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Figures 3b and 3d. Oxygen surface termination changes metallic to semiconductor with 0.35 eV band gap value
as shown in Figure 3c.

We also investigated T phase of pristine Ti2C that indicates metallicity with magnetic moments of 1.89
µB per formula unit in Figure 4a. We have also tested the magnetic moment and is also verified by the previous
studies; 1.91 µB per formula unit [26]. F and OH functional group passivations do not change metallic behavior.
Magnetic moment of 1.89 µB per formula unit vanished when passivated with F and OH. It basically turns
to nonmagnetic metallic. Like H phase of pristine Ti2C, O passivated T phase of pristine Ti2C changed its
electronic properties to semiconductor with 0.25 eV.
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Figure 3. Spin-resolved band structure of H phases of pristine (a) Ti2 C and fully terminated functionalization Ti2 CT2

as (b) Ti2F2 (c) Ti2O2 and (d) Ti2 (OH)2 at the equilibrium lattice constants.

4. Summary and concluding remarks
We theoretically investigated the structural, electronic and magnetic properties of both H and T phases of
Ti2C (MXene). We showed for the first time in the literature that Ti2C changes from being half-metallic to
metallic, or to semiconductor in the H phase and being metallic to semiconductor in the T phase, upon surface
functionalization. Transition from metal to semiconductor and metal to half-metal in both H and T phases of
Ti2C (MXene) would be interesting issue 2D materials beyond graphene. Nonmagnetic MXenes are also strong
candidates for superconductivity due to their display of metallic character.
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Figure 4. Spin-resolved band structure of T phases of pristine (a) Ti2 C and fully terminated functionalization Ti2 CT2

as (b) Ti2F2 (c) Ti2O2 and (d) Ti2 (OH)2 at the equilibrium lattice constants.
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