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Abstract:  In this paper, inertia wheel pendulum balance control is performed by using swing up and PID controller. Paper provides 

predictions on real time design balance system. Predictions were performed through data that were classified and tested by machine 

learning via MATLAB. Data obtained a result of the analyze of balance positions and swinging times of the wheel different diameters and 

weights in real-time. Through to this work will be able to predictable which wheel characteristics can be controlled and balanced. 
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I. Introduction  

Inertia wheel pendulum (IWP) is a nonlinear and underactuated 

system with two degrees of freedom. The pendulum structure 

consists of a pendulum rod that can swing freely in the vertical axis, 

a rotating wheel in the same axis with the rod, and a motor that 

produces a rotational movement[1]. The main purpose of the IWP 

systems is the alignment of the pendulum wheel on the vertical axis. 

Balancing is the process of raising and aligning the pendulum with 

the control methods of the torque produced by the DC motor.  

Machine learning is an artificial intelligence field that enables 

the system to create a model by using learning from past 

experiences and to make estimation against future situations[2]. 

Machine learning is used in many disciplines in our age. It provides 

convenience to devices and people in data analysis, decision 

making, estimation, conclusion and classification processes. The 

combination of machine learning and artificial intelligence with 

devices has enabled the creation of smart, self-guessing capable 

devices. Today, many systems are used by making use of the 

capabilities of artificial intelligence. These abilities were used in this 

study to estimate the balance of the balancing system. 

The aim of this study is to control the pendulum wheel in 

different weights and wheel diameters. In addition, according to the 

weight and diameter variables to determine the ideal range for the 

balance of the pendulum is done by machine learning algorithms.  

The studies on IWP started in 2001 and continue with many 

types of control methods and designs[3,4,5]. When the studies on 

IWP were examined, Hernández controlled the IWP system with PI 

in 2003 [6]. Victor carried out IWP balancing with limited torque 

technique in 2005 [7]. Victor made the dynamics and control of the 

IWP system in 2018 [8]. Jafar controlled the double pendulum 

mechanism with PID [9].  

In this study, 39 different experiments were conducted and 

balance condition was analyzed together with disturbing factors 

affecting the system. Rest of the information of this document is 

organized as follows: Sec. A is devoted to describing IWP system 

modeling and dynamics. Sec. B indicates the system design 

procedure and control methods. In Sec. C, data analysis of wheel 

balance and make a prediction, classification using machine learning 

application. Then the final section reveals the results of this study.  

 

1.1. Wheel Pendulum System and Dynamic Models 

 
The IWP system consists of three parts. These parts are 

pendulum rod, pendulum wheel, and dc motor. In the IWP control 

design, the dynamic model of the system is calculated by the Euler-

Lagrange formula 1: Euler-Lagrange Equations (ℒ) is a very useful 

method of extracting the equations of motion of the dynamic 

system. For the solution of the Euler-Lagrange equation, firstly there 

must be a difference in kinetic energy and potential energy [10,11] . 

 

 

Table 1 Wheel Characteristics And Balance data 

Parameter Description Units 

mw  Wheel mass kg 

mP  Pendulum mass kg 

mm  DC motor mass kg 

Jw  Wheel moment of inertia Kg. m2 

Jp  Pendulum moment of inertia Kg. m2 

Jm  DC motor moment of inertia Kg. m2 

φ Rotation angle of wheel rad 

θ Tilted angle of the pole rad 

r Wheel radius m 

l Pendulum rod length m 

g Gravity acceleration m/s2 

 
ℒ = Ke − Pe (1) 

Ke: Total kinetic energy of  system  

Pe : Total potential energy of system  

The total kinetic energy consists of the wheel, the wheel bar and 

the kinetic energy of the engine. kinetic energy of wheel, kinetic 

energy of pendulum rod, kinetic energy of motor and total kinetic 

energy equations describe in (2). 

 

 
Fig. 1 Parameter of IWP configuration 

 
To simplify the equation when defined as A in eq. 2-3: 

A = Jw + Jp + Jm + mw l2 + mp  
l

2
 

2

+ mm l2 (2) 

Ke =
1

2
Aθ 2 +

1

2
Jwφ 2 (3) 

The total potential energy of the system appears in eq. 4: 

Pe =  mw l + mm l + mp

l

2
 g cos θ (4) 
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To simplify the equation when defined as U in eq. 5-6: 

U = mw l + mm l + mp

l

2
 (5) 

Pe = Ug cos θ (6) 

The Lagrange difference equation appears eq. 7: 

ℒ =
1

2
Aθ 2 +

1

2
Jwφ 2 − Ug cos θ (7) 

When the difference equation is written in the general Lagrange 

expression in 8: and q1=θ accepted q2=φ, the equation is 

determined. 
d

dt
 
∂ℒ

∂q i
 −  

∂ℒ

∂qi
 = τi  (8) 

 When differential equation solutions are made, eq. 9-10: is found.  

Aθ + Jwφ − Ugsinθ = 0 (9) 

Jwθ + Jwφ = τ (10) 

From these eq. the mathematical model of the system is determined 

in eq. 11: 

 

2.  System Control Method  

Different control methods are used at various stages in order to 

realize the movement of the pendulum from 0 degrees to 180 

degrees with the least energy consumption. In the design of the 

pendulum, the movement is provided by DC motor with control 

signals generated by the Arduino control card as shown in the fig. 2 

block diagram. During the swing process, the angle and position 

information are measured by the encoder and conveyed to the 

control unit for feedback. In this study, two different methods are 

used. 

The first is the swing up control of the pendulum and the second is 

the balance control of the pendulum with PID. 

 The Swing up control does not balance the pendulum to the 

desired vertical alignment but supports it to arrive in the angular 

range where the balance will take place. The position of the 

pendulum wheel is 0° at the beginning. The ramp function or any 

triggering is applied to start the wheel swinging. As a result of the 

trigger, the wheel starts to swinging clockwise and counter 

clockwise. The swinging should be supported to increase the 

pendulum from 0° to 180° degrees. This support is applied with the 

torque produced by the dc motor. The support torque is applied 

when the variable pendulum angle value is maximum and the 

acceleration is zero during the swinging process. As a result of these 

processes, the pendulum is increased to the desired swinging range 

The pendulum control process switches to the balance control range 

when the swinging operation is complete[12]. 

Fig. 2 Wheel pendulum mechanism and block diagram 

Proportional-integral-derivative (PID) controllers are the most 

important control systems used to control processes, due to their 

simple and easy design, low cost and wide range of applications 

[13]. The main purpose of the PID control system is that the 

controlled process variable reaches the target in minimum time with 

minimum error difference. The PID control compares the reference 

value and feedback variables. In order to eliminate the error between 

two variables, proportional, integral and derivative parameters are 

applied to the system. These parameters modify according to the 

system model[14]. These Parameters are used in continuous cycling 

method and system response methods developed by Ziegler-Nichols. 

Large settling time and overshoot are minimized by Kp Ki Kd 

parameters. 

 
Fig. 3 Wheel pendulum mechanism and block diagram 

 

3. Prediction Via Machine Learning  

Machine learning software algorithms classify, handle and 

analyze the data in the system and, as a result, perform functions 

such as make decisions, prediction, and completion. As a result of 

the machine learning analysis, it increases the accuracy, precision 

and the value of efficiency by estimating according to similar input 

analyse data. 

3.1 Data Collecting 

In this study, 3 different diameter wheels were used in machine 

learning analysis. Each wheel is fixated with different weights. 

When the wheel pendulum project was running in different diameter 

and weight case, data collection operations were collected for 

machine learning by MATLAB-Arduino serial communication and 

observation data. As a result of the data collected, it has been 

measured whether the wheel has reached its balance position and 

how many swing periods have occurred to reach it. 

 
Table 2.  Sample of Wheel Characteristics And Balance data 

Wheel Radius 

Wheel Intertia 
Wheel Mass Settling time Balance 

9R 550 90 50 1 

9R 900 110 50 1 

9R 1128 125 50 1 

9R 1265 140 53 1 

7.5R 666 85 77 1 

7.5R 760 115 80 1 

7.5R 1200 195 90 0 

7.5R 1375 225 90 0 

6R 474 73 90 0 

6R 512 80 92 0 

6R 611 100 94 0 

6R 732 110 98 1 
 

 

 

 

 

 

 
A Jw

Jw Jw
  

θ 

φ 
 +  

−Ugsinθ
0

 =  
0
τ
  (11) 

42

INTERNATIONAL SCIENTIFIC JOURNAL "TRANS & MOTAUTO WORLD" WEB ISSN 2534-8493; PRINT ISSN 2367-8399

YEAR V, ISSUE 2, P.P. 41-44 (2020)



3.2 Training Algorithm 

 

The data were analyzed by MATLAB classification learner and 

trained for machine learning. As a result of the training, the best 

accuracy rate was determined and classified with k-Nearest 

Neighborhood (KNN) algorithm [15]. 

 

 Euclidean distance was used in the KNN algorithm. Euclidean 

distance can be explained as the linear distance between two points 

in the classification process. x = {x1, x2, .., xn} and y = {y1, y2, .., 

yn} are used by handle the euclidean distance (d) eq. 13: between 

two points [16]. As a result of machine learning training, confusion 

matrix and ROC curve appear in the figure 4. True positive and true 

negative values are over %90. The accuracy is calculated as 92% in 

the ROC curve. 

 

d =     xi − yi 
2

k

i=1
 (13) 

The accuracy, recall, precision  and f-measure of the 

classification process were calculated to determine the true accuracy 

rate of the prediction system [17]. 

 

Fig. 4 Confusion matrix and ROC curve 

 

False negative (FN) =0.10 

False positive (FP) = 0.06   

True negative (TN) = 0.94 

True positive (TP) =0.90 

 

Accuracy =
TP + TN

TP + TN + FP + FN

=
0.90 + 0.94

0.90 + 094 + 0.06 + 0.10
= 1.58 

(14) 

Recall =
TP

TP + FN
=

0.90

0.90 + 0.10
= 0.90 

 

(15) 

Precision =
TP

TP + FP
=

0.90

0.90 + 0.06
= 0.9375 

 

(16) 

F − measure =
2 ∗ recall ∗ precision

recall + precision

=
2 ∗ 0.90 ∗ 0.9375

0.90 + 0.9375
= 0.918 

 

(17) 

As a result of calculations, the actual success rate in the predict 

process was found to be 91.8 percent. 

 

3.3 Test and Control Operation 

 

The accuracy of the KNN algorithm is tested with values that 

are different from the training data shown in the table 3. The 

accuracy of machine learning was 83.33% compared to the 

predicted rate and the actual values. 

 

 

 

Table 3.  Test Data and Balance Predict 

 

 

4. Conclusion 

In this study a control of nonlinear and underactuated system 

was achieved by swing up control and PID control at various angle 

stages. The most significant factors affecting the stability of IWP 

systems are wheel diameter and wheel weight. These inputs were 

applied to the IWP system with different values. In the control 

process, it was observed that the weight supported to balance 

position until the to an amount. In case the pendulum weight is light 

or too heavy, the balancing operation was not realized. As the wheel 

radius expands, the pendulum was more easily balanced with lighter 

weight in the process. 

The novelty of this study unlike the other IWP studies is that the 

wheel parameters where the balance position takes place is trained 

by machine learning algorithm and predicts the balance position at 

different wheel types. When the machine learning balance estimate 

and the real balance position of the IWP were compared, it was 

found that the similarity was 83.33%. 

As a result of this study, it can be predicted whether the IWP 

system is stable for the balance position according to the input 

parameter characteristics using machine learning In the case of the 

predicted result of the IWP system is unbalanced, it will be 

determined that different wheel parameters should be applied for 

balance. In addition to the model dynamic calculations, the balance 

state of the IWP system will be determined more accurately. IWP 

applications will be more realistic because all the factors affecting 

the balancing process will be taken into account. In the continuation 

of this study, it is aimed that the input information will be entered 

into the control card via the interface screen and evaluated in real 

time with the machine learning. 
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