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1. Introduction 

    In this work, we define Gaussian generalized Tribonacci numbers and give properties of Gaussian Tribonacci and 

Gaussian Tribonacci-Lucas numbers as special cases. First, we present some background about generalized 

Tribonacci numbers and Gaussian numbers before defining Gaussian generalized Tribonacci numbers. 

Recently, there have been so many studies of the sequences of numbers in the literature which are defined 

recursively. Two of these type of sequences are the sequences of Tribonacci and Tribonacci-Lucas which are 

special case of generalized Tribonacci numbers. A generalized Tribonacci sequence 𝑉𝑛  𝑛≥0 =  𝑉𝑛 𝑉0,𝑉1 ,𝑉2  𝑛≥0 

is defined by the third-order recurrence relations 

𝑉𝑛 = 𝑉𝑛−1 + 𝑉𝑛−2 + 𝑉𝑛−3# 1.1  

with the initial values𝑉0 = 𝑐0,𝑉1 = 𝑐1,𝑉2 = 𝑐2not all being zero.This sequence has been studied by many authors 

and more detail can be found in the extensive literature dedicated to these sequences, see for example[4], [5], 

[7],[8],[18], [20], [23], [25], [27], [32], [33]. 

The sequence  𝑉𝑛  𝑛≥0 can be extended to negative subscripts by defining 

𝑉−𝑛 = −𝑉−(𝑛−1) − 𝑉−(𝑛−2) + 𝑉−(𝑛−3) 

for 𝑛 = 1,2,3,…. Therefore, recurrence  1.1  holds for all integer 𝑛. 

    The first few generalized Tribonacci numbers with positive subscript and negative subscript are given in the 

following table: 
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𝑛 0 1 2 3 4 5 ⋯ 

𝑉𝑛  𝑐0 𝑐1 𝑐2 𝑐0 + 𝑐1 + 𝑐2 𝑐0 + 2𝑐1 + 2𝑐2 2𝑐0 + 3𝑐1 + 4𝑐2 ⋯ 

𝑉−𝑛  𝑐0 𝑐2 − 𝑐1 − 𝑐0 2𝑐1 − 𝑐2 2𝑐0 − 𝑐1 2𝑐2 − 2𝑐1 − 3𝑐0 𝑐0 + 5𝑐1 − 3𝑐2 ⋯ 

 

It is well known that generalized Tribonacci numbers 𝑉𝑛 𝑉0 ,𝑉1 ,𝑉2  can be written, for all integers 𝑛, in the Binet 

form 

𝑉𝑛 =
𝑃𝛼𝑛

 𝛼 − 𝛽  𝛼 − 𝛾 
+

𝑄𝛽𝑛

 𝛽 − 𝛼  𝛽 − 𝛾 
+

𝑅𝛾𝑛

 𝛾 − 𝛼  𝛾 − 𝛽 
 # 1.2  

where 

𝑃 = 𝑉2 −  𝛽 + 𝛾 𝑉1 + 𝛽𝛾𝑉0 , 

𝑄 = 𝑉2 −  𝛼 + 𝛾 𝑉1 + 𝛼𝛾𝑉0 , 

𝑅 = 𝑉2 −  𝛼 + 𝛽 𝑉1 + 𝛼𝛽𝑉0 , 

andwhere 𝛼,𝛽 and 𝛾are the distinct roots of the cubic equation 𝑥3 − 𝑥2 − 𝑥 − 1 = 0and they are given as 

𝛼 =
1 +  19 + 3 33

3
+  19 − 3 33

3

3
, 

𝛽 =
1 + 𝜔 19 + 3 33

3
+𝜔2 19 − 3 33

3

3
, 

𝛾 =
1 +𝜔2 19 + 3 33

3
+𝜔 19 − 3 33

3

3
, 

where 

𝜔 =
−1 + 𝑖 3

2
= 𝑒𝑥𝑝 2𝜋𝑖/3 , 

is a primitive cube root of unity.We consider two special cases of𝑉𝑛 :𝑉𝑛 0,1,1 = 𝑇𝑛 is the sequence of Tribonacci 

numbers (sequence A000073 in [23]) and 𝑉𝑛 3,1,3 = 𝐾𝑛 is the sequence of Tribonacci-Lucas numbers (A001644 

in [26]). 

    Recently, there have been so many studies of the sequences of Gaussian numbers in the literature. A Gaussian 

integer 𝓏is a complex number whose real and imaginary parts are both integers, i.e., 𝓏 = 𝑎 + 𝑖𝑏, 𝑎, 𝑏 ∈ ℤ. These 

numbers were investigated by Gauss in 1832 and the set of them is denoted by ℤ 𝑖 . With the usual addition and 

multiplication of complex numbers, ℤ 𝑖  forms an integral domain. The norm of a Gaussian integer 𝑎 + 𝑖𝑏,𝑎,𝑏 ∈

ℤis its Euclidean norm, that is, 𝑁  𝑎 + 𝑖𝑏 =  𝑎2 + 𝑏2 =   𝑎 + 𝑖𝑏  𝑎 − 𝑖𝑏 .For more information about this kind 

of integers, we refer to the work of Fraleigh [10]. 

    If we use together sequences of integers defined recursively and Gaussian type integers, we obtain a new 

sequences of complex numbers such as Gaussian Fibonacci, Gaussian Lucas, Gaussian Pell, Gaussian Pell-Lucas 

and Gaussian Jacobsthal numbers; Gaussian Padovan and Gaussian Pell-Padovan numbers; Gaussian Tetranacci 

numbers. 

    In 1963, Horadam [16] introduced the concept of complex Fibonacci number called as the Gaussian Fibonacci 

number. Pethe [22] defined the complex Tribonacci numbers at Gaussian integers, see also [12]. There are other 

several studies dedicated to these sequences of Gaussian numbers such as the works in [1], [3], [6], [12], [13], [14], 

[15], [16], [17], [19], [21], [28], [29], [30], among others. 
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2. Gaussian Generalized Tribonacci Numbers 

Gaussian generalized Tribonacci numbers  𝐺𝑉𝑛  𝑛≥0 =  𝐺𝑉𝑛 𝐺𝑉0,𝐺𝑉1 ,𝐺𝑉2  𝑛≥0are defined by 

𝐺𝑉𝑛 = 𝐺𝑉𝑛−1 + 𝐺𝑉𝑛−2 + 𝐺𝑉𝑛−3# 2.1  

with the initial conditions 

𝐺𝑉0 = 𝑐0 + 𝑖 𝑐2 − 𝑐1 − 𝑐0 ,𝐺𝑉1 = 𝑐1 + 𝑖𝑐0,𝐺𝑉2 = 𝑐2 + 𝑖𝑐1, 

not all being zero. The sequences  𝐺𝑉𝑛  𝑛≥0can be extended to negative subscripts by defining 

𝐺𝑉−𝑛 = −𝐺𝑉−(𝑛−1) − 𝐺𝑉−(𝑛−2) + 𝐺𝑉−(𝑛−3) 

for 𝑛 = 1,2,3,…. Therefore, recurrence  2.1  hold for all integer 𝑛.  Note that for 𝑛 ≥ 0 

𝐺𝑉𝑛 = 𝑉𝑛 + 𝑖𝑉𝑛−1  # 2.2  

and 

𝐺𝑉−𝑛 = 𝑉−𝑛 + 𝑖𝑉−𝑛−1. 

    The first few Gaussian generalized Tribonacci numbers with positive subscript and negative subscript are given 

in the following table: 

𝑛 0 1 2 3 

𝐺𝑉𝑛  𝑐0 + 𝑖 𝑐2 − 𝑐1 − 𝑐0  𝑐1 + 𝑖𝑐0 𝑐2 + 𝑖𝑐1 𝑐0 + 𝑐1 + 𝑐2 + 𝑖𝑐2 

𝐺𝑉−𝑛  𝑐0 + 𝑖 𝑐2 − 𝑐1 − 𝑐0  𝑐2 − 𝑐1 − 𝑐0 + 𝑖 2𝑐1 − 𝑐2  2𝑐1 − 𝑐2 + 𝑖 2𝑐0 − 𝑐1  2𝑐0 − 𝑐1 + 𝑖 2𝑐2 − 2𝑐1 − 3𝑐0  

We consider two special cases of 𝐺𝑉𝑛 :𝐺𝑉𝑛 0,1,1 + 𝑖 = 𝐺𝑇𝑛  is the sequence of Gaussian Tribonacci numbers and 

𝐺𝑉𝑛 3− 𝑖, 1 + 3𝑖, 3 + 𝑖 = 𝐺𝐾𝑛 is the sequence of Gaussian Tribonacci-Lucas numbers. We formally define them 

as follows: 

    Gaussian Tribonacci numbers are defined by 

𝐺𝑇𝑛 = 𝐺𝑇𝑛−1 + 𝐺𝑇𝑛−2 + 𝐺𝑇𝑛−3# 2.3  

with the initial conditions 

𝐺𝑇0 = 0,𝐺𝑇1 = 1,𝐺𝑇2 = 1 + 𝑖 

and Gaussian Tribonacci-Lucas numbers are defined by 

𝐺𝐾𝑛 = 𝐺𝐾𝑛−1 + 𝐺𝐾𝑛−2 + 𝐺𝐾𝑛−3# 2.4  

with the initial conditions 

𝐺𝐾0 = 3 − 𝑖,𝐺𝐾1 = 1 + 3𝑖,𝐺𝐾2 = 3 + 𝑖. 

Note that for 𝑛 ≥ 0 

𝐺𝑇−𝑛 = 𝑇−𝑛 + 𝑖𝑇−𝑛−1 

and 

𝐺𝐾−𝑛 = 𝐾−𝑛 + 𝑖𝐾−𝑛−1 . 

The first few values of Gaussian Tribonacci numbers with positive and negative subscript are given in the following 

table. 
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𝑛 0 1 2 3 4 5 6 7 8 9 

𝐺𝑇𝑛  0 1 1 + 𝑖 2 + 𝑖 4 + 2𝑖 7 + 4𝑖 13 + 7𝑖 24 + 13𝑖 44 + 24𝑖 81 + 44𝑖 

𝐺𝑇−𝑛  0 𝑖 1 − 𝑖 −1 2𝑖 2 − 3𝑖 −3 + 𝑖 1 + 4𝑖 4 − 8𝑖 −8 + 5𝑖 

The first few values of Gaussian Tribonacci-Lucas numbers with positive and negative subscript are given in the 

following table. 

𝑛 0 1 2 3 4 5 6 7 8 

𝐺𝐾𝑛  3 − 𝑖 1 + 3𝑖 3 + 𝑖 7 + 3𝑖 11 + 7𝑖 21 + 11𝑖 39 + 21𝑖 71 + 39𝑖 131 + 71𝑖 

𝐺𝐾−𝑛  3 − 𝑖 −1 − 𝑖 −1 + 5𝑖 5 − 5𝑖 −5 − 𝑖 −1 + 11𝑖 11 − 15𝑖 −15 + 3𝑖 3 + 23𝑖 

    The following Theorem presents the generating function of Gaussian generalized Tribonacci numbers. 

Theorem 2.1The generating function of Gaussian generalized Tribonacci numbers is given as 

𝑓𝐺𝑉𝑛  𝑥 =  𝐺𝑉𝑛𝑥
𝑛

∞

𝑛=0

=
𝐺𝑉0 +  𝐺𝑉1 − 𝐺𝑉0 𝑥 +  𝐺𝑉2 − 𝐺𝑉1 − 𝐺𝑉0 𝑥

2

1 − 𝑥 − 𝑥2 − 𝑥3
.  # 2.5  

Proof. Let 

𝑓𝐺𝑉𝑛  𝑥 =  𝐺𝑉𝑛𝑥
𝑛

∞

𝑛=0

 

be generating function of Gaussian generalized Tribonacci numbers. Then using the definition of Gaussian 

Tribonacci numbers, and substracting𝑥𝑓 𝑥 , 𝑥2𝑓 𝑥  and 𝑥3𝑓 𝑥 from 𝑓 𝑥 we obtain (note the shift in the index 𝑛 

in the third line) 

 1 − 𝑥 − 𝑥2 − 𝑥3 𝑓𝐺𝑉𝑛  𝑥 =  𝐺𝑉𝑛𝑥
𝑛

∞

𝑛=0

− 𝑥 𝐺𝑉𝑛𝑥
𝑛

∞

𝑛=0

− 𝑥2  𝐺𝑉𝑛𝑥
𝑛

∞

𝑛=0

− 𝑥3  𝐺𝑉𝑛𝑥
𝑛

∞

𝑛=0

 

=  𝐺𝑉𝑛𝑥
𝑛

∞

𝑛=0

− 𝐺𝑉𝑛𝑥
𝑛+1

∞

𝑛=0

− 𝐺𝑉𝑛𝑥
𝑛+2

∞

𝑛=0

− 𝐺𝑉𝑛𝑥
𝑛+3

∞

𝑛=0

 

=  𝐺𝑉𝑛𝑥
𝑛

∞

𝑛=0

− 𝐺𝑉𝑛−1𝑥
𝑛

∞

𝑛=1

− 𝐺𝑉𝑛−2𝑥
𝑛

∞

𝑛=2

− 𝐺𝑉𝑛−3𝑥
𝑛

∞

𝑛=0

 

=  𝐺𝑉0 + 𝐺𝑉1𝑥 + 𝐺𝑉2𝑥
2 −  𝐺𝑉0𝑥 + 𝐺𝑉1𝑥

2 − 𝐺𝑉0𝑥
2 

+  𝐺𝑉𝑛 − 𝐺𝑉𝑛−1 − 𝐺𝑉𝑛−2 − 𝐺𝑉𝑛−3 

∞

𝑛=3

𝑥𝑛  

= 𝐺𝑉0 + 𝐺𝑉1𝑥 + 𝐺𝑉2𝑥
2−𝐺𝑉0𝑥 − 𝐺𝑉1𝑥

2 − 𝐺𝑉0𝑥
2 

= 𝐺𝑉0 +  𝐺𝑉1−𝐺𝑉0 𝑥 +  𝐺𝑉2 − 𝐺𝑉1 − 𝐺𝑉0 𝑥
2. 

Rearranging above equation, we get 

𝑓𝐺𝑉𝑛  𝑥 =
𝐺𝑉0 +  𝐺𝑉1 − 𝐺𝑉0 𝑥 +  𝐺𝑉2 − 𝐺𝑉1 − 𝐺𝑉0 𝑥

2

1 − 𝑥 − 𝑥2 − 𝑥3
. 

The previous Theorem gives the following results as particular examples: 

𝑓𝐺𝑇𝑛  𝑥 =
𝑥 + 𝑖𝑥2

1− 𝑥 − 𝑥2 − 𝑥3
# 2.6  

and 

𝑓𝐺𝐾𝑛  𝑥 =
− 1 + 𝑖 𝑥2 −  2− 4𝑖 𝑥 + 3 − 𝑖

1 − 𝑥 − 𝑥2 − 𝑥3
.  # 2.7  
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The result  2.6  is already known, see [12]. 

    We now present the Binet formula for the Gaussian generalized Tribonacci numbers. 

Theorem 2.2TheBinet formula for the Gaussian generalized Tribonacci numbers is 

𝐺𝑉𝑛 =  
𝑃𝛼𝑛

 𝛼 − 𝛽  𝛼 − 𝛾 
+

𝑄𝛽𝑛

 𝛽 − 𝛼  𝛽 − 𝛾 
+

𝑅𝛾𝑛

 𝛾 − 𝛼  𝛾 − 𝛽 
  

+𝑖  
𝑃𝛼𝑛−1

 𝛼 − 𝛽  𝛼 − 𝛾 
+

𝑄𝛽𝑛−1

 𝛽 − 𝛼  𝛽 − 𝛾 
+

𝑅𝛾𝑛−1

 𝛾 − 𝛼  𝛾 − 𝛽 
  

where𝑃,𝑄 and 𝑅 are as in  1.2 . 

Proof. The proof follows from  1.2 and  2.2 . 

The previous Theorem gives the following results as particular examples: the Binet formula for the Gaussian 

Tribonaccinumbers is 

𝐺𝑇𝑛 =  
𝛼𝑛+1

 𝛼 − 𝛽  𝛼 − 𝛾 
+

𝛽𝑛+1

 𝛽 − 𝛼  𝛽 − 𝛾 
+

𝛾𝑛+1

 𝛾 − 𝛼  𝛾 − 𝛽 
  

+𝑖  
𝛼𝑛

 𝛼 − 𝛽  𝛼 − 𝛾 
+

𝛽𝑛

 𝛽 − 𝛼  𝛽 − 𝛾 
+

𝛾𝑛

 𝛾 − 𝛼  𝛾 − 𝛽 
  

and the Binet formula for the Gaussian Tribonacci-Lucas numbers is 

𝐺𝐾𝑛 =  𝛼𝑛 + 𝛽𝑛 + 𝛾𝑛 + 𝑖 𝛼𝑛−1 + 𝛽𝑛−1 + 𝛾𝑛−1 . 

The following Theorem present some formulas of Gaussian generalized Tribonacci numbers. 

Theorem 2.3 For𝑛 ≥ 1 we have the following formulas: 

(a) (Sum of the Gaussian Generalized Tribonacci numbers) 

 𝐺𝑉𝑘

𝑛

𝑘=1

=
1

2
 𝐺𝑉𝑛+3 − 𝐺𝑉𝑛+1 − 𝐺𝑉2 − 𝐺𝑉0  

 (b):  𝐺𝑉2𝑘+1
𝑛
𝑘=1 =

1

2
 𝐺𝑉2𝑛+2 + 𝐺𝑉2𝑛+1 + 𝐺𝑉1 − 𝐺𝑉2  

 (c):  𝐺𝑉2𝑘
𝑛
𝑘=1 =

1

2
 𝐺𝑉2𝑛+4 − 2𝐺𝑉2𝑛+2 − 𝐺𝑉2𝑛+1 − 𝐺𝑉0 − 3𝐺𝑉1 . 

Proof. 

(a) Using the recurrence relation 

𝐺𝑉𝑛 = 𝐺𝑉𝑛−1 + 𝐺𝑉𝑛−2 + 𝐺𝑉𝑛−3 

i.e. 

𝐺𝑉𝑛−3 = 𝐺𝑉𝑛 − 𝐺𝑉𝑛−1 − 𝐺𝑉𝑛−2 

we obtain 

𝐺𝑉0 = 𝐺𝑉3 − 𝐺𝑉2 − 𝐺𝑉1  

𝐺𝑉1 = 𝐺𝑉4 − 𝐺𝑉3 − 𝐺𝑉2  
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𝐺𝑉2 = 𝐺𝑉5 − 𝐺𝑉4 − 𝐺𝑉3  

𝐺𝑉3 = 𝐺𝑉6 − 𝐺𝑉5 − 𝐺𝑉4  

𝐺𝑉4 = 𝐺𝑉7 − 𝐺𝑉6 − 𝐺𝑉5  

⋮ 

𝐺𝑉𝑛−3 = 𝐺𝑉𝑛 − 𝐺𝑉𝑛−1 − 𝐺𝑉𝑛−2 

𝐺𝑉𝑛−2 = 𝐺𝑉𝑛+1 − 𝐺𝑉𝑛 − 𝐺𝑉𝑛−1 

𝐺𝑉𝑛−1 = 𝐺𝑉𝑛+2 − 𝐺𝑉𝑛+1 − 𝐺𝑉𝑛  

𝐺𝑉𝑛 = 𝐺𝑉𝑛+3 − 𝐺𝑉𝑛+2 − 𝐺𝑉𝑛+1. 

If we add the equations by side by, we get 

 𝐺𝑉𝑘

𝑛

𝑘=1

=
1

2
 𝐺𝑉𝑛+3 − 𝐺𝑉𝑛+1 − 𝐺𝑉2 − 𝐺𝑉0 . 

(b) When we use  2.1 , we obtain the following equalities: 

𝐺𝑉𝑘 = 𝐺𝑉𝑘−1 + 𝐺𝑉𝑘−2 + 𝐺𝑉𝑘−3 

𝐺𝑉4 = 𝐺𝑉3 + 𝐺𝑉2 + 𝐺𝑉1  

𝐺𝑉6 = 𝐺𝑉5 + 𝐺𝑉4 + 𝐺𝑉3  

𝐺𝑉8 = 𝐺𝑉7 + 𝐺𝑉6 + 𝐺𝑉5  

𝐺𝑉10 = 𝐺𝑉9 + 𝐺𝑉8 + 𝐺𝑉7  

⋮ 

𝐺𝑉2𝑛+2 = 𝐺𝑉2𝑛+1 + 𝐺𝑉2𝑛 + 𝐺𝑉2𝑛−1. 

If we rearrange the above equalities, we obtain 

𝐺𝑉3 = 𝐺𝑉4 − 𝐺𝑉2 − 𝐺𝑉1  

𝐺𝑉5 = 𝐺𝑉6 − 𝐺𝑉4 − 𝐺𝑉3  

𝐺𝑉7 = 𝐺𝑉8 − 𝐺𝑉6 − 𝐺𝑉5  

𝐺𝑉9 = 𝐺𝑉10 − 𝐺𝑉8 − 𝐺𝑉7  

⋮ 

𝐺𝑉2𝑛+1 = 𝐺𝑉2𝑛+2 − 𝐺𝑉2𝑛 − 𝐺𝑉2𝑛−1. 

Now, if we add the above equations by side by, we get 

 𝐺𝑉2𝑘+1

𝑛

𝑘=1

= 𝐺𝑉2𝑛+2 − 𝐺𝑉2 − 𝐺𝑉2𝑘−1

𝑛

𝑘=1

 

= 𝐺𝑉2𝑛+2 − 𝐺𝑉2 −   𝐺𝑉2𝑘+1

𝑛

𝑘=1

− 𝐺𝑉2𝑛+1 − 𝐺𝑉1  
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= 𝐺𝑉2𝑛+2 + 𝐺𝑉2𝑛+1 + 𝐺𝑉1 − 𝐺𝑉2 − 𝐺𝑉2𝑘+1

𝑛

𝑘=1

 

and so 

 𝐺𝑉2𝑘+1

𝑛

𝑘=1

=
𝐺𝑉2𝑛+2 + 𝐺𝑉2𝑛+1 + 𝐺𝑉1 − 𝐺𝑉2

2
. 

(c) Since 

 𝐺𝑉2𝑘+1

𝑛

𝑘=1

+  𝐺𝑉2𝑘

𝑛

𝑘=1

=  𝐺𝑉𝑘

2𝑛+1

𝑘=1

− 𝐺𝑉1 

we have 

 𝐺𝑉2𝑘

𝑛

𝑘=1

=  𝐺𝑉𝑘

2𝑛+1

𝑘=1

− 𝐺𝑉2𝑘+1

𝑛

𝑘=1

− 𝐺𝑉1  

=
1

2
 𝐺𝑉 2𝑛+1 +3 − 𝐺𝑉 2𝑛+1 +1 − 𝐺𝑉2 − 𝐺𝑉0 −

𝐺𝑉2𝑛+2 + 𝐺𝑉2𝑛+1 + 𝐺𝑉1 − 𝐺𝑉2

2
− 𝐺𝑉1  

=
1

2
 𝐺𝑉2𝑛+4 − 𝐺𝑉2𝑛+2 − 𝐺𝑉2 − 𝐺𝑉0 −

𝐺𝑉2𝑛+2 + 𝐺𝑉2𝑛+1 + 𝐺𝑉1 − 𝐺𝑉2

2
− 𝐺𝑉1  

=
1

2
 𝐺𝑉2𝑛+4 − 2𝐺𝑉2𝑛+2 − 𝐺𝑉2𝑛+1 − 𝐺𝑉0 − 3𝐺𝑉1  

This completes the proof.  

As special cases of above Theorem, we have the following two Corollary. First one present some formulas 

of Gaussian Tribonacci numbers. 

COROLLARY 2.4For 𝑛 ≥ 1we have the following formulas: 

 (a):(Sum of the Gaussian Tribonacci numbers) 

 GTk

n

k=1

=
1

2
 GTn+3 − GTn+1 + (1 + i)  

 (b): GT2k+1
n
k=1 =

1

2
 GT2n+2 + GT2n+1 − 1  

 (c): GT2k
n
k=1 =

1

2
 GT2n+4 − 2GT2n+2 − GT2n+1 − 3 . 

Second Corollary gives some formulas of Gaussian Tribonacci-Lucas numbers. 

COROLLARY 2.5 For 𝑛 ≥ 1we have the following formulas:  

 (a): (Sum of the Gaussian Tribonacci-Lucas numbers) 

 𝐺𝐾𝑘

𝑛

𝑘=1

=
1

2
 𝐺𝐾𝑛+3 − 𝐺𝐾𝑛+1 + 2𝑖  

 (b):  𝐺𝐾2𝑘+1
𝑛
𝑘=1 =

1

2
 𝐺𝐾2𝑛+2 + 𝐺𝐾2𝑛+1 − 2 + 2𝑖  
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 (c):  𝐺𝐾2𝑘
𝑛
𝑘=1 =

1

2
 𝐺𝐾2𝑛+4 − 2𝐺𝐾2𝑛+2 − 𝐺𝐾2𝑛+1 − 10𝑖 . 

3. Some Identities Connecting Gaussian Tribonacci and Gaussian Tribonacci-Lucas 

Numbers 

In this section, we obtain some identities of Gaussian Tribonacci numbers and Gaussian Tribonacci-Lucas numbers. 

First, we can give a few basic relations between 𝐺𝑇𝑛   and 𝐺𝐾𝑛  as 

𝐺𝐾𝑛 = −𝐺𝑇𝑛+2 + 4𝐺𝑇𝑛+1 − 𝐺𝑇𝑛  #(3.1)  

𝐺𝐾𝑛 = 3𝐺𝑇𝑛+1 − 2𝐺𝑇𝑛 − 𝐺𝑇𝑛−1 #(3.2)  

and also 

𝐺𝐾𝑛 = 𝐺𝑇𝑛 + 2𝐺𝑇𝑛−1 + 3𝐺𝑇𝑛−2.  #(3.3)  

Note that the last three identities hold for all integers𝑛. For example, to show  3.1 , writing 

𝐺𝐾𝑛 = −𝐺𝑇𝑛+2 + 4𝐺𝑇𝑛+1 − 𝐺𝑇𝑛  

and solving the system of equations 

𝐺𝐾0 = 𝑎𝐺𝑇2 + 𝑏𝐺𝑇1 + 𝑐𝐺𝑇0 

𝐺𝐾1 = 𝑎𝐺𝑇3 + 𝑏𝐺𝑇2 + 𝑐𝐺𝑇1 

𝐺𝐾2 = 𝑎𝐺𝑇4 + 𝑏𝐺𝑇3 + 𝑐𝐺𝑇2 

we find that𝑎 = −1, 𝑏 = 4, 𝑐 = −1. Or using the relations𝐺𝑇𝑛 = 𝑇𝑛 + 𝑖𝑇𝑛−1, 𝐺𝐾𝑛 = 𝐾𝑛 + 𝑖𝐾𝑛−1and identity𝐾𝑛 =

4𝑇𝑛+1 − 𝑇𝑛 − 𝑇𝑛+2we obtain the identity  3.1 . The others can be found similarly.  

We will present some other identities between Gaussian Tribonacci and Gaussian Tribonacci-Lucas numbers with 

the help of generating functions. Firstly, we give the ordinary generating function of the sequence𝑉𝑛 .  

LEMMA 3.1 Suppose that𝑓𝑉𝑛  𝑥 =  𝑎𝑛𝑥
𝑛∞

𝑛=0 is the ordinary generating function of the sequence𝑉𝑛 . Then𝑓𝑉𝑛  𝑥 is 

given by 

𝑓𝑉𝑛  𝑥 =
𝑉0 +  𝑉1 − 𝑉0 𝑥 +  𝑉2 − 𝑉1 − 𝑉0 𝑥

2

1 − 𝑥 − 𝑥2 − 𝑥3
.  #(3.4)  

Proof. Using  1.1  and some calculation, we obtain 

𝑓𝑉𝑛  𝑥 − 𝑥𝑓𝑉𝑛  𝑥 − 𝑥
2𝑓𝑉𝑛  𝑥 − 𝑥

3𝑓𝑉𝑛  𝑥 = 𝑉0 +  𝑉1 − 𝑉0 𝑥 +  𝑉2 − 𝑉1 − 𝑉0 𝑥
2 

which gives (3.4). 

The previous Lemma gives the following results as particular examples:  

𝑓𝑇𝑛  𝑥 =
𝑥

1 − 𝑥 − 𝑥2 − 𝑥3
 

and 

𝑓𝐾𝑛  𝑥 =
3 − 2𝑥 − 𝑥2

1 − 𝑥 − 𝑥2 − 𝑥3
. 

Both results are very well known. 

The following lemma will help us to derive the generating functions of even and odd-indexed Gaussian Tribonacci 

and Gaussian Tribonacci-Lucas sequences. 
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LEMMA 3.2 ([11])Suppose that𝑓 𝑥 =  𝑎𝑛𝑥
𝑛∞

𝑛=0 is the generating function of the sequence 𝑎𝑛  𝑛≥0. Then the 

generating functions of the sequences  𝑎2𝑛  𝑛≥0and 𝑎2𝑛+1 𝑛≥0are given as 

𝑓𝑎2𝑛
 𝑥 =  𝑎2𝑛𝑥

𝑛

∞

𝑛=0

=
𝑓  𝑥 + 𝑓 − 𝑥 

2
 

and 

𝑓𝑎2𝑛+1
 𝑥 =  𝑎2𝑛+1𝑥

𝑛

∞

𝑛=0

=
𝑓  𝑥 − 𝑓 − 𝑥 

2 𝑥
 

respectively.  

The next Theorem presents the generating functions of even and odd-indexed generalized Tribonacci sequences. 

THEOREM 3.3 ([11]) The generating functions of the sequences 𝑉2𝑛and𝑉2𝑛+1are given by 

𝑓𝑉2𝑛
 𝑥 =

𝑉0 +  𝑉2 − 3𝑉0 𝑥 +  2𝑉1 − 𝑉2 𝑥
2

1 − 3𝑥 − 𝑥2 − 𝑥3
 

and 

𝑓𝑉2𝑛+1
 𝑥 =

𝑉1 +  𝑉2 − 2𝑉1 + 𝑉0 𝑥 +  𝑉2 − 𝑉1 − 𝑉0 𝑥
2

1 − 3𝑥 − 𝑥2 − 𝑥3
 

respectively. 

From the previous Theorem we get the following results as particular examples: 

𝑓𝑇2𝑛
 𝑥 =

𝑥 + 𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3
and 𝑓𝑇2𝑛+1

 𝑥 =
1 − 𝑥

1 − 3𝑥 − 𝑥2 − 𝑥3
 

and 

𝑓𝐾2𝑛
 𝑥 =

3− 6𝑥 − 𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3
and 𝑓𝐾2𝑛+1

 𝑥 =
1 + 4𝑥 − 𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3
. 

The next Theorem presents the generating functions of even and odd-indexed Gaussian generalized Tribonacci 

sequences. 

THEOREM 3.4 The generating functions of the sequences 𝐺𝑉2𝑛 and 𝐺𝑉2𝑛+1are given by 

𝑓𝐺𝑉2𝑛
=
𝐺𝑉0 +  𝐺𝑉2 − 3𝐺𝑉0 𝑥 +  2𝐺𝑉1 − 𝐺𝑉2 𝑥

2

1 − 3𝑥 − 𝑥2 − 𝑥3
 

and 

𝑓𝐺𝑉2𝑛+1
=
𝐺𝑉1 +  𝐺𝑉2 − 2𝐺𝑉1 + 𝐺𝑉0 𝑥 +  𝐺𝑉2 − 𝐺𝑉1 − 𝐺𝑉2 𝑥

2

1 − 3𝑥 − 𝑥2 − 𝑥3
 

respectively. 

Proof. Both statements are consequences of Lemma 3.2 applied to (2.5) and some lengthy algebraic calculations. 

The previous theorem gives the following two corollaries as particular examples. Firstly, the next one presents the 

generating functions of even and odd-indexed Gaussian Tribonacci sequences. 
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COROLLARY 3.5 The generating functions of the sequences 𝐺𝑇2𝑛and 𝐺𝑇2𝑛+1are given by 

𝑓𝐺𝑇2𝑛
=
 1 + 𝑖 𝑥 +  1− 𝑖 𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3
 #(3.5) 

and 

𝑓𝐺𝑇2𝑛+1
=

1 +  𝑖 − 1 𝑥 + 𝑖𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3
 #(3.6) 

respectively. 

The following Corollary gives the generating functions of even and odd-indexed Gaussian Tribonacci-Lucas 

sequences. 

COROLLARY 3.6 The generating functions of the sequences 𝐺𝐾2𝑛and 𝐺𝐾2𝑛+1are given by 

𝑓𝐺𝐾2𝑛
=
 3 − 𝑖 +  −6 + 4𝑖 𝑥 +  −1 + 5𝑖 𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3
 #(3.7) 

and 

𝑓𝐺𝐾2𝑛+1
=
 1 + 3𝑖 +  4 − 6𝑖 𝑥 +  −1 − 𝑖 𝑥2

1 − 3𝑥 − 𝑥2 − 𝑥3
 #(3.8) 

respectively. 

The next Corollary present identities between GausssianTribonacci and Gaussian Tribonacci-Lucas sequences. 

Corollary 3.7  We have the following identities: 

 3 − 𝑖 𝐺𝑇2𝑛 +  −6 + 4𝑖 𝐺𝑇2𝑛−2 +  −1 + 5𝑖 𝐺𝑇2𝑛−4 =  1 + 𝑖 𝐺𝐾2𝑛−2 +  1− 𝑖 𝐺𝐾2𝑛−4 , 

 1 + 3𝑖 𝐺𝑇2𝑛 +  4− 6𝑖 𝐺𝑇2𝑛−2 +  −1 − 𝑖 𝐺𝑇2𝑛−4 =  1 + 𝑖 𝐺𝐾2𝑛−1 +  1− 𝑖 𝐺𝐾2𝑛−3 , 

 3− 𝑖 𝐺𝑇2𝑛+1 +  −6 + 4𝑖 𝐺𝑇2𝑛−1 +  −1 + 5𝑖 𝐺𝑇2𝑛−3 = 𝐺𝐾2𝑛 +  𝑖 − 1 𝐺𝐾2𝑛−2 + 𝑖𝐺𝐾2𝑛−4 , 

 1 + 3𝑖 𝐺𝑇2𝑛+1 +  4 − 6𝑖 𝐺𝑇2𝑛−1 +  −1 − 𝑖 𝐺𝑇2𝑛−3 = 𝐺𝐾2𝑛+1 +  𝑖 − 1 𝐺𝐾2𝑛−1 + 𝑖𝐺𝐾2𝑛−3. 

Proof. From (3.5) and (3.7) we obtain 

  3 − 𝑖 +  −6 + 4𝑖 𝑥 +  −1 + 5𝑖 𝑥2 𝑓𝐺𝑇2𝑛
=   1 + 𝑖 𝑥 +  1 − 𝑖 𝑥2 𝑓𝐺𝐾2𝑛 . 

The LHS (left hand side) is equal to  

𝐿𝐻𝑆 =   3 − 𝑖 +  −6 + 4𝑖 𝑥 +  −1 + 5𝑖 𝑥2  𝐺𝑇2𝑛𝑥
𝑛

∞

𝑛=0

 

=  3− 𝑖  1 + 𝑖 𝑥 +  ( 3− 𝑖 𝐺𝑇2𝑛 +

∞

𝑛=2

 −6 + 4𝑖 𝐺𝑇2𝑛−2 +  −1 + 5𝑖 𝐺𝑇2𝑛−4)𝑥𝑛  

whereas the RHS is 

𝑅𝐻𝑆 =   1 + 𝑖 𝑥 +  1− 𝑖 𝑥2  𝐺𝐾2𝑛𝑥
𝑛

∞

𝑛=0
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=  1 + 𝑖  3− 𝑖 𝑥 +  ( 1 + 𝑖 𝐺𝐾2𝑛−2 +

∞

𝑛=2

 1 − 𝑖 𝐺𝐾2𝑛−4)𝑥𝑛 . 

Compare the coefficients and the proof of the first identity is done. The other identities can be proved similarly by 

using (3.5)- (3.8). 

We present an identity related with Gaussian general Tribonacci numbers and Tribonacci numbers. 

Theorem 3.8 For 𝑛 ≥ 0 and 𝑚 ≥ 0  the following identity holds: 

𝐺𝑉𝑚+𝑛 = 𝑇𝑚−1𝐺𝑉𝑛+2 +  𝑇𝑚−2 + 𝑇𝑚−3 𝐺𝑉𝑛+1 + 𝑇𝑚−2𝐺𝑉𝑛 .  # 3.9  

Proof. We prove the identity by strong induction on m. If 𝑚 = 0 then 

𝐺𝑉𝑛 = 𝑇−1𝐺𝑉𝑛+2 +  𝑇−2 + 𝑇−3 𝐺𝑉𝑛+1 + 𝑇−2𝐺𝑉𝑛 , 

which is true because𝑇−1 = 0,𝑇−2 = 1,𝑇−3 = −1. Assume that the equality holds for 𝑚 ≤ 𝑘. For 𝑚 = 𝑘 + 1,  we 

have 

𝐺𝑉 𝑘+1 +𝑛 = 𝐺𝑉𝑛+𝑘 + 𝐺𝑉𝑛+𝑘−1 + 𝐺𝑉𝑛+𝑘−2 

= 𝑇𝑘−1𝐺𝑉𝑛+2 +  𝑇𝑘−2 + 𝑇𝑘−3 𝐺𝑉𝑛+1 + 𝑇𝑘−2𝐺𝑉𝑛  

+ 𝑇𝑘−2𝐺𝑉𝑛+2 +  𝑇𝑘−3 + 𝑇𝑘−4 𝐺𝑉𝑛+1 + 𝑇𝑘−3𝐺𝑉𝑛  

+ 𝑇𝑘−3𝐺𝑉𝑛+2 +  𝑇𝑘−4 + 𝑇𝑘−5 𝐺𝑉𝑛+1 + 𝑇𝑘−4𝐺𝑉𝑛  

= 𝑇𝑘−1 + 𝑇𝑘−2 + 𝑇𝑘−3 𝐺𝑉𝑛+2 + ( 𝑇𝑘−2 + 𝑇𝑘−3 + 𝑇𝑘−4  

+ 𝑇𝑘−3 + 𝑇𝑘−4 + 𝑇𝑘−5 )𝐺𝑉𝑛+1 +  𝑇𝑘−2 + 𝑇𝑘−3 + 𝑇𝑘−4 𝐺𝑉𝑛  

=𝑇𝑘𝐺𝑉𝑛+2 +  𝑇𝑘−1 + 𝑇𝑘−2 𝐺𝑉𝑛+1 + 𝑇𝑘−1𝐺𝑉𝑛  

= 𝑇 𝑘+1 −1𝐺𝑉𝑛+2 +  𝑇 𝑘+1 −2 + 𝑇 𝑘+1 −3 𝐺𝑉𝑛+1 + 𝑇 𝑘+1 −2𝐺𝑉𝑛 . 

By strong induction on m, this proves (3.9). 

The previous Theorem gives the following results as particular examples: For 𝑛 ≥ 0and 𝑚 ≥ 0, we have 

(taking 𝐺𝑉𝑛 = 𝐺𝑇𝑛)  

𝐺𝑇𝑚+𝑛 = 𝑇𝑚−1𝐺𝑇𝑛+2 +  𝑇𝑚−2 + 𝑇𝑚−3 𝐺𝑇𝑛+1 + 𝑇𝑚−2𝐺𝑇𝑛  

and (taking 𝐺𝑉𝑛 = 𝐺𝐾𝑛) 

𝐺𝐾𝑚+𝑛 = 𝑇𝑚−1𝐺𝐾𝑛+2 +  𝑇𝑚−2 + 𝑇𝑚−3 𝐺𝐾𝑛+1 + 𝑇𝑚−2𝐺𝐾𝑛 . 

4. Matrix Formulation of  𝑽𝒏 

Consider the sequence 𝑈𝑛   which is defined by the third-order recurrence relation 

𝑈𝑛 = 𝑈𝑛−1 + 𝑈𝑛−2 + 𝑈𝑛−3 ,        𝑈0 = 𝑈1 = 0,𝑈2 = 1. 

Note that some authors call  𝑈𝑛   as a Tribonacci sequence instead of  𝑇𝑛  . The numbers 𝑈𝑛  can be expressed using 

Binet’s formula  

𝑈𝑛 =
𝛼𝑛

 𝛼 − 𝛽  𝛼 − 𝛾 
+

𝛽𝑛

 𝛽 − 𝛼  𝛽 − 𝛾 
+

𝛾𝑛

 𝛾 − 𝛼  𝛾 − 𝛽 
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and the negative numbers 𝑈−𝑛(𝑛 = 1,2,3,… ) satisfies the recurrence relation 

𝑈−𝑛 =  
𝑈𝑛+1 𝑈𝑛+2

𝑈𝑛 𝑈𝑛+1
 = 𝑈𝑛+1

2 − 𝑈𝑛+2𝑈𝑛 . 

The matrix method is very useful method in order to obtain some identities for special sequences. We define the 

square matrix M  of order 3 as: 

𝑀 =  
1 1 1
1 0 0
0 1 0

  

such that 𝑑𝑒𝑡𝑀 = 1. Note that  

 𝑀𝑛 =  
𝑈𝑛+2 𝑈𝑛+1 + 𝑈𝑛 𝑈𝑛+1

𝑈𝑛+1 𝑈𝑛 + 𝑈𝑛−1 𝑈𝑛
𝑈𝑛 𝑈𝑛−1 + 𝑈𝑛−2 𝑈𝑛−1

 . # 4.1  

For a proof  of(4.1), see [2]. Matrix formulation of 𝑇𝑛  and 𝐾𝑛  can be given as 

 
𝑇𝑛+2

𝑇𝑛+1

𝑇𝑛

 =  
1 1 1
1 0 0
0 1 0

 

𝑛

 
𝑇2

𝑇1

𝑇0

  # 4.2  

and 

 
𝐾𝑛+2

𝐾𝑛+1

𝐾𝑛

 =  
1 1 1
1 0 0
0 1 0

 

𝑛

 
𝐾2

𝐾1

𝐾0

 . # 4.3  

The matrix M was defined and used in [24]. For matrix formulations (4.2)and (4.3), see [31] and [34]. Note that  

𝐺𝑇𝑛 = 𝑖𝑈𝑛 + 𝑈𝑛+1 

and 

𝐺𝐾𝑛 =  3 − 𝑖 𝑈𝑛+2 −  2 − 4𝑖 𝑈𝑛+1 −  1 + 𝑖 𝑈𝑛 . 

Consider the matrices 𝑁𝑇 ,𝐸𝑇 defined by as follows: 

𝑁𝑇 =  
1 + 𝑖 1 1

1 0 𝑖
0 𝑖 1 − 𝑖

 , 

𝐸𝑇 =  
𝐺𝑇𝑛+2 𝐺𝑇𝑛+1 𝐺𝑇𝑛
𝐺𝑇𝑛+1 𝐺𝑇𝑛 𝐺𝑇𝑛−1

𝐺𝑇𝑛 𝐺𝑇𝑛−1 𝐺𝑇𝑛−2

 . 

Next Theorem presents the relations between 𝑀𝑛 ,  𝑁𝑇and 𝐸𝑇. 

Theorem 4.1 ([12]) For 𝑛 ≥ 2, we have  

 𝑀𝑛𝑁𝑇 = 𝐸𝑇 . 

Proof.Using the relation  

𝐺𝑇𝑛 = 𝑖𝑈𝑛 + 𝑈𝑛+1 

we get 
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 𝑀𝑛𝑁𝑇 =  
𝑈𝑛+2 𝑈𝑛+1 + 𝑈𝑛 𝑈𝑛+1

𝑈𝑛+1 𝑈𝑛 + 𝑈𝑛−1 𝑈𝑛
𝑈𝑛 𝑈𝑛−1 + 𝑈𝑛−2 𝑈𝑛−1

  
1 + 𝑖 1 1

1 0 𝑖
0 𝑖 1 − 𝑖

  

=  

𝑈𝑛 + 𝑈𝑛+1 + (1 + 𝑖)𝑈𝑛+2 𝑖𝑈𝑛+1 + 𝑈𝑛+2 𝑖𝑈𝑛 + 𝑈𝑛+1

𝑈𝑛 + 𝑈𝑛−1 + (1 + 𝑖)𝑈𝑛+1 𝑖𝑈𝑛 + 𝑈𝑛+1 𝑈𝑛 + 𝑖𝑈𝑛−1

(1 + 𝑖)𝑈𝑛 + 𝑈𝑛−1 + 𝑈𝑛−2 𝑈𝑛 + 𝑖𝑈𝑛−1 𝑈𝑛−1 + 𝑖𝑈𝑛−2

  

=  
𝐺𝑇𝑛+2 𝐺𝑇𝑛+1 𝐺𝑇𝑛
𝐺𝑇𝑛+1 𝐺𝑇𝑛 𝐺𝑇𝑛−1

𝐺𝑇𝑛 𝐺𝑇𝑛−1 𝐺𝑇𝑛−2

 . 

Above Theorem can be proved by mathematical induction as well. 

Consider the matrices 𝑁𝐾 ,𝐸𝐾 defined by as follows: 

𝑁𝐾 =  
3 + 𝑖 1 + 3𝑖 3 − 𝑖

1 + 3𝑖 3 − 𝑖 −1 − 𝑖
3 − 𝑖 −1 − 𝑖 −1 + 5𝑖

 , 

𝐸𝐾 =  
𝐺𝐾𝑛+2 𝐺𝐾𝑛+1 𝐺𝐾𝑛
𝐺𝐾𝑛+1 𝐺𝐾𝑛 𝐺𝐾𝑛−1

𝐺𝐾𝑛 𝐺𝐾𝑛−1 𝐺𝐾𝑛−2

 . 

The following Theorem presents the relations between  𝑀𝑛 ,  𝑁𝐾and 𝐸𝐾 . 

Theorem 4.2 For 𝑛 ≥ 2, we have  

 𝑀𝑛𝑁𝐾 = 𝐸𝐾 . 

Proof. Using the relation  

𝐺𝐾𝑛 =  3 − 𝑖 𝑈𝑛+2 −  2− 4𝑖 𝑈𝑛+1 −  1 + 𝑖 𝑈𝑛  

we get 

 𝑀𝑛𝑁𝐾 =  
𝑈𝑛+2 𝑈𝑛+1 + 𝑈𝑛 𝑈𝑛+1

𝑈𝑛+1 𝑈𝑛 + 𝑈𝑛−1 𝑈𝑛
𝑈𝑛 𝑈𝑛−1 + 𝑈𝑛−2 𝑈𝑛−1

  
3 + 𝑖 1 + 3𝑖 3 − 𝑖

1 + 3𝑖 3 − 𝑖 −1 − 𝑖
3− 𝑖 −1− 𝑖 −1 + 5𝑖

  

=  
𝐺𝐾𝑛+2 𝐺𝐾𝑛+1 𝐺𝐾𝑛
𝐺𝐾𝑛+1 𝐺𝐾𝑛 𝐺𝐾𝑛−1

𝐺𝐾𝑛 𝐺𝐾𝑛−1 𝐺𝐾𝑛−2

 . 

The previous Theorem, also, can be proved by mathematical induction. 

Similarly, matrix formulation of 𝑉𝑛  can be given as 

 
𝑉𝑛+2

𝑉𝑛+1

𝑉𝑛

 =  
1 1 1
1 0 0
0 1 0

 

𝑛

 
𝑉2

𝑉1

𝑉0

 . 

Consider the matrices 𝑁𝑉 ,𝐸𝑉  defined by as follows: 

𝑁𝑉 =  

𝑐2 + 𝑖𝑐1 𝑐1 + 𝑖𝑐0 𝑐0 + 𝑖(−𝑐0 − 𝑐1 + 𝑐2)
𝑐1 + 𝑖𝑐0 𝑐0 + 𝑖(−𝑐0 − 𝑐1 + 𝑐2) −𝑐0 − 𝑐1 + 𝑐2 + 𝑖(2𝑐1 − 𝑐2)

𝑐0 + 𝑖(−𝑐0 − 𝑐1 + 𝑐2) −𝑐0 − 𝑐1 + 𝑐2 + 𝑖(2𝑐1 − 𝑐2) 2𝑐1 − 𝑐2 + 𝑖(2𝑐0 − 𝑐1)
 , 
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𝐸𝑉 =  
𝐺𝑉𝑛+2 𝐺𝑉𝑛+1 𝐺𝑉𝑛
𝐺𝑉𝑛+1 𝐺𝑉𝑛 𝐺𝑉𝑛−1

𝐺𝑉𝑛 𝐺𝑉𝑛−1 𝐺𝑉𝑛−2

 . 

We show that for 𝑛 ≥ 2, 𝑀𝑛𝑁𝑉 = 𝐸𝑉 . Note that  

𝐺𝑉𝑛 =  𝑐1 + 𝑖𝑐0 𝑈𝑛−2 +  𝑐0 + 𝑖𝑐2 + (1− 𝑖)𝑐1 𝑈𝑛−1 +  𝑐2 + 𝑖𝑐1 𝑈𝑛  

=𝑐0𝑈𝑛−1 + 𝑖𝑐0𝑈𝑛−2 +  1− 𝑖 𝑐1𝑈𝑛−1 + 𝑐1𝑈𝑛−2 + 𝑖𝑐2𝑈𝑛−1 + 𝑖𝑐1𝑈𝑛 + 𝑐2𝑈𝑛  

=  𝑐1𝑈𝑛−2 + 𝑐0𝑈𝑛−1 + 𝑐1𝑈𝑛−1 + 𝑐2𝑈𝑛 + 𝑖 𝑐0𝑈𝑛−2 − 𝑐1𝑈𝑛−1 + 𝑐2𝑈𝑛−1 + 𝑐1𝑈𝑛 . 

We now present our final Theorem. 

Theorem 4.3 For 𝑛 ≥ 2, we have  

 𝑀𝑛𝑁𝑉 = 𝐸𝑉 . 

Proof. 

 𝑀𝑛𝑁𝑉 =  
𝑈𝑛+2 𝑈𝑛+1 + 𝑈𝑛 𝑈𝑛+1

𝑈𝑛+1 𝑈𝑛 + 𝑈𝑛−1 𝑈𝑛
𝑈𝑛 𝑈𝑛−1 + 𝑈𝑛−2 𝑈𝑛−1

  

 

𝑐2 + 𝑖𝑐1 𝑐1 + 𝑖𝑐0 𝑐0 + 𝑖(−𝑐0 − 𝑐1 + 𝑐2)
𝑐1 + 𝑖𝑐0 𝑐0 + 𝑖(−𝑐0 − 𝑐1 + 𝑐2) −𝑐0 − 𝑐1 + 𝑐2 + 𝑖(2𝑐1 − 𝑐2)

𝑐0 + 𝑖(−𝑐0 − 𝑐1 + 𝑐2) −𝑐0 − 𝑐1 + 𝑐2 + 𝑖(2𝑐1 − 𝑐2) 2𝑐1 − 𝑐2 + 𝑖(2𝑐0 − 𝑐1)
  

=  
𝐺𝑉𝑛+2 𝐺𝑉𝑛+1 𝐺𝑉𝑛
𝐺𝑉𝑛+1 𝐺𝑉𝑛 𝐺𝑉𝑛−1

𝐺𝑉𝑛 𝐺𝑉𝑛−1 𝐺𝑉𝑛−2

 . 
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