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The main objective of meta-analysis is to aggregate the results of multiple scientific studies on a specific
topic. Instead of aggregating the results of different studies, different methods are aggregated with the
help of fuzzy c-means clustering algorithm in the proposed method. Meta fuzzy functions are introduced
in the paper. The idea of meta fuzzy functions is to aggregate the methods which are proposed for the
same purpose; forecasting, prediction, etc. The study aggregates the models for the same method under
different parameter specifications rather than aggregating different methods. Recently, recurrent type-1
fuzzy functions are introduced as an alternative forecasting method. The main advantages of recurrent
type-1 fuzzy functions are that they are free of assumptions and rules. There are three parameters to be
adjusted for recurrent type-1 fuzzy functions; the number of lags for AR(p), the number of lags for MA(q),
and the number of clusters. The models for recurrent type-1 fuzzy functions with different parameter
specifications are aggregated in the paper. The results show that it is possible to increase the forecasting
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performances of recurrent type-1 fuzzy functions in terms of both RMSE and MAPE.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this study, Meta Fuzzy Functions (MFFs) are introduced. One
of the motivations of the study is the concept of meta-analysis.
Meta-analysis was introduced by Glass [1] in 1976. He statistically
aggregated the findings of 375 different psychotherapy outcome
studies in his paper. Also, DerSimonian and Laird [2] defined that
meta-analysis is a collection of analytic results for integrating the
findings. The studies based on meta-analysis have become more
popular in the last few decades. In the study, rather than aggre-
gating the results of different studies for a purpose, the different
methods for a purpose are aggregated. It has been shown that ag-
gregation or hybridizing different methods have better forecasting
or prediction accuracy. Thus, the main contribution of the paper
is to aggregate as many methods as we can collect in functions.
Aggregation of the methods is proceeded in the same sense of
meta-analysis by looking at the outcomes/results of the methods.
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Aggregation of the methods are performed by using Fuzzy C-Means
(FCM) clustering technique in the study. This is a first study in the
literature that aims to aggregate methods in the notion of meta-
analysis by using FCM.

The proposed method is formed with a set of outcomes of the
methods for a specific topic, such as forecasting performances of
methods for a time series dataset. The outcomes of the methods are
clustered using Fuzzy C-Means (FCM) clustering algorithm which
was introduced by Bezdek [3]. Using the degrees of memberships
values of the methods for each cluster, MFFs are obtained. Finally,
the function that has the best set of outcomes is selected as the
best MFF. As an application, a forecasting method, Recurrent Type-
1 Fuzzy Functions (R-T1FF), which was introduced by Tak et al. [4]
is used.

T1FFs were introduced for classification and regression prob-
lems at first by Turksen [5] in 2008. First, Beyhan and Alici [6] and
later, Aladag et al. [7] adapted T1FFs to time series forecasting prob-
lems. Beyhan and Alici [6] used an auto-regressive with exogenous
input (ARX) model structure that was not able to search for the best
model. Therefore, Aladag et al. [7] proposed a forecasting method
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to search for the best model by adapting Autoregressive (AR) model
into their algorithm. Tak et al. [4] in 2017 introduced another
method with T1FFs including also Moving Average (MA) model
with recurrent learning structure into their algorithm. Eventually,
R-T1FFs outperformed other two methods, which use T1FFs, in
terms of RMSE values.

The purpose of the study is to aggregate the methods for the
same purpose into functions. The idea behind aggregating the
methods is the assumption that each method has much, partial or
no information for a given dataset. Thus, while the methods that
perform better will be collected into one function, the methods
that perform worse will be collected into another function. Our aim
is to obtain better outcomes using the power of many methods or,
at least, obtain the best method among many.

The remainder of this article is organized as follows. In the sec-
ond section, two algorithms are given; MFFs and MFFs of T1FFs. In
order to evaluate the performance of the proposed method, some
applications are given in the third section. Finally, the conclusions
and remarks are given in Section 4.

2. Proposed method

The questions like “Which method should we choose for a
dataset?” and "Please explain why the proposed method does
not outperform other methods?" lead us to come up with the
proposed method, MFFs. The main scope of the proposed method
is to aggregate as many methods as we can collect into functions
and, eventually, to get better outcomes. Thus, the input matrix of
the MFFs consists of the outcomes of the methods which were
previously introduced. Using the outcomes of the methods as their
characteristics, the methods are clustered by using FCM. Finally,
the best cluster (function) is selected as the MFFy. Although there
are different fuzzy clustering techniques such as FCM [3], Possi-
bilistic C-Means (PCM) [8], Fuzzy Possibilistic C-Means (FPCM) [9],
Possibilistic Fuzzy C-Means (PFCM) [9], and Interval Type-2 Fuzzy
Possibilistic C-Means (IT2FPCM) [10], FCM is preferred because
of its fame and simplicity. In other words, FCM is just one way
to obtain the weights of the methods in functions. Using another
fuzzy clustering technique in the setup of the MFFs might be the
future work.

Two algorithms are introduced in this section. The first one is
the main algorithm that the paper aims to propose and the second
algorithm is an application of MFFs.

2.1. Algorithm 1: meta fuzzy functions

There are three components in the main algorithm that needs
to have further clarification. The first one is the clarification of
“function”. A function consists of the combination of the methods.
When we say “a function” we mean “a cluster” in FCM. The second
one is the weights of the methods in functions. Weights of the
methods are simply obtained from the degrees of memberships of
amethod in a cluster. The third one is the best meta fuzzy function
(MFFpes: ). Because we have as many functions as the number of
clusters, we are looking for a function that has the best evaluation
criteria. In this case, the function that has the best evaluation
criteria is called MFFy.; and future estimations or forecasts are
calculated with (MFFpes; ).

e Step 1. Determination the existing related methods for the
problem (i.e forecasting) and training of the related methods.

- Step 1.1. Determine m existing methods for the prob-
lem.

- Step 1.2. The dataset is divided into two sets; training
and test datasets.

X=[X3].i=12,....p;j=12..n (1)

Xiain = [X] . i=1,2,...,p;j = 1,2.., ntrain (2)

Xeest = [Xj],i=1,2,...,p:j = ntrain+1, ntrain+2, ..., n
(3)

- Step 1.3. Train the related existing methods for a given
dataset by using Xein-

- Step 1.4. Obtain the outcomes (i.e forecasts) by using
the trained methods for the test dataset, X;.s;. The input
matrix of the MFFs are the collection of outcomes of the
trained methods.

Z=|[z;].i=1,2,... ntest;j=1,2...m (4)
where Z; is the outcomes of the ith data point for jth
method.

211 Zi2 - - Zintest

21 Zan - - Zantest
zZ = . .

Zm,l Zm,Z . . Zm,ntest

e Step 2. The input matrix Z is divided into two, training (Zqin)
and test (Z.s ) sets. The training set is used to determine the
weights of the methods in functions and the test set is used
to evaluate the performance of MFFs.

Zirain = [Z4] . i=1,2,... ntrainl;j = 1,2...,m (5)

Znwest = [Z3] . i = ntrain, ntrain141, ..., ntest;j = 1,2...,m
(6)

o Step 3. Determining the weights of the methods in functions.
The input matrix Z.;, is clustered by using FCM. The degrees
of memberships in each cluster are used to determine the
weights of the methods in functions. In this case, a cluster
represents a function.

- Step 3.1. Determine the fuzziness index parameter,

number of clusters and initial cluster centers.
- Step 3.2. Calculate the membership value with the for-

mula

Cdzu)\ 7T |
Zk, Vi) \ ™
Mik = )
) ]:Z] (d(zk, w))

i=1,2,....,c;k=1,2,...,n (7)

under the constraint; Y ;_, uix = 1,if s < o — cut,
then wj value will be taken as zero. Z is the input
matrix, v is the cluster centers, d(.) stands for Euclidean
distance function, c is the number of clusters, and m is
the fuzziness parameter in Egs. (7)-(8).

- Step 3.3. Calculate the new cluster centers.

i — Dkt Mz
T n
Zk:l /“L?I:
- Step 3.4. Repeat Step 2 and Step 3 until the difference

of clusters between two iterations drops under some
threshold or the number of iterations is reached.

(8)
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e Step 4. Obtaining the meta fuzzy functions.
MFFs, which are given in Eq. (9), are obtained by using the
degrees of memberships that are calculated for the training

set.
m
MFFi(z) = ) wiz,i=1,2,...,¢ 9)
j=1
Wi = —i=1,2,...,¢ (10)
21:1 Hij

where MFF; stands for the ith meta fuzzy function, ; stands
for the degree of membership value of the jth method in ith
cluster and c represents the number of clusters.

e Step 5. Repeat Step 3-4 for different m and c.

e Step 6. Selecting the best combination of the methods in a
function.
The function that has the best evaluation criteria is chosen as
the best meta fuzzy function (MFFps; ).

e Step 7. The outcomes of the MFFs’ system is calculated by
using the MFF; for the test set, Z,s.

F = MFFpest(Zgest ) (1

where F is the outcomes of the MFFs.

Algorithm 1: Pseudo code of the MFFs

Determine the methods for the purpose
Specify the length of the training and test datasets
Train the related methods by using the training dataset (Y¢qin)
Obtain the outcomes from the trained methods for the test
dataset (Yiest)
Use the outcomes of the methods as the input matrix (Z) for MFFs
Divide Z into two as Zigin and Zes
Initialize the maximum number of clusters(c) and fuzzy index
parameter (m)
while (¢ <m ) do
while (i < max number of functions/clusters (c)) do
Use FCM for Z;,4;, to determine the weights of each method
in each function
Obtain the MFFs by using Equation 9
Calculate the evaluation criteria of MFFs
j=j+1
a=aoa+0.1
Return the best function ( MFF,. ) that has the best evaluation
criteria
Calculate the outcomes (F) by using MFFj;

2.2. Algorithm 2: MFFs of R-T1FFs

Because fuzzy set theory deals with the uncertainty, there
have been many studies employing fuzzy set theory to forecast-
ing problems. Some of these studies are conducted by Song and
Chissom [11,12], Chen [13] Chen and Zhang [ 14], Gupta et al. [ 15],
and Aladag et al. [16]. In the literature, it has been also shown
that the combination of methods improves the forecasting perfor-
mances. Makridakis [17] has pointed out that combining reduces
the variance of forecasting errors. Thus, the empirical finding of
combining improves forecasting accuracy holds true. Bates and
Granger [18] combined two forecasting methods in their study
and got better forecasting performances than both forecasting
methods. Granger and Ramanathan [ 19] proposed 3 approaches for
combining three forecasting methods. Besides, some of the studies
on combining forecasts are conducted by Bunn [20], Newbold and

Granger [21], Zou and Yang [22], and Aladag et al. [23]. In this
application, the models of a recently introduced time series fore-
casting method (R-T1FFs) are aggregated with MFFs. Aggregating
the different forecasting methods is left for future work.

The important issue with recurrent systems is stability. R-T1FFs
are very sensitive the initial starting points and different parame-
ter specifications as well. Therefore, the model that has the best
evaluation criteria is searched iteratively with different starting
points and parameter specifications to ensure stability in R-T1FFs.
In, R-T1FFs, there are 3 parameters, which has an effect on the
forecasting performances, to be adjusted; the number of clusters,
the number of lags for AR(p) model, and the number of lags for
MA(q) model. The pseudo code of the R-T1FFs based on MFFs is
given Algorithm 2.

Algorithm 2: Pseudo code of MFFS of R-T1FFs

Specify the length of the training and test datasets
Specify the maximum number of clusters and number of lags for
AR and MA for R-T1FFs
while i<c do
while j<p do
while k<q do
Train the R-T1FFs by using training dataset
if RMSE < cut-off then
| Save the forecasts in Z
k=k+1
=i+l
L i=i+1
Use the outcomes of the m models as the input matrix (Z) for
MFFs
Divide Z into two as Ztqin and Zes
Initialize the maximum number of clusters and fuzzy index
parameter
while (¢« <m ) do
while (i < max number of functions/clusters (c)) do
Use FCM for Zy4i, to determine the weights of each
forecasting model in each function/cluster
Obtain the MFFs by using Equations 20
Calculate the evaluation criteria of MFFs
i=i+1
a=aoa+0.1

Return the function (MFF. ) that has the best evaluation criteria
Calculate the forecasts (F) by using MFFpes; for Zgeg:

o Step 1. The time series dataset is divided into two as training
and test datasets by using the block partitioning technique.

Y=[Y],i=1,2,...,t (12)
Yoain = [Yi],i = 1, 2.., ntrain (13)
Yiest = [Yil,i=ntrain+ 1, ntrain +2,...,n (14)

e Step 2. Obtaining the input matrix of MFFs from R-T1FFs.

- Step 2.1. There are 3 parameters, which have effect on
forecasting performances, to be adjusted for R-T1FFs,
the number of clusters and the number of lags for AR
and MA for R-T1FFs forecasting approach.

- Step 2.2. Obtain m different forecasting models from
R-T1FFs with different parameter specifications for Y¢qin
by putting a restriction on RMSE value. R-T1FFs is a
forecasting method that has been recently introduced.
The detailed steps of R-T1FFs are found in [4].
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- Step 2.3. Obtain the forecasts of m models The input
matrix (Z) are constituted of the forecasts of the m
models for MFFs.

Z=[z;].i=1,2,... ntest;j=1,2,....m (15)

Step 1-2 are proceeded to determine the input matrix
of the MFFs. In this case, because we have a forecasting
problem, the models of R-T1FFs with different parame-
ter specifications are aggregated in functions. The rest
of the algorithm is the main algorithm of MFFs but
modified for the forecasting problem.

e Step 3. The input matrix Z is divided into two, training (Zyin)
and test (Z.s ) sets. The training set is used to determine the
weights of the models of R1TFFs in functions and the test set
is used to evaluate the performance of MFFs.

Zirain = [Z4] ,i=1,2,... ntrainl;j=1,2...,m (16)
Znwest = [Z3] . i = ntrain1, ntrain1 41, ... ntest;j=1,2...,m
(17)

e Step 4. Initialize the maximum number of clusters(c) and
fuzziness parameter (m). There are some studies in the lit-
erature on specifying the fuzziness parameter.

Many studies in literature have been conducted by researchers
based on the selection of fuzziness parameter. One of them is
introduced by Pal and Bezdek [24], which points out that the
optimal value of m is limited to [1.5,2.5]. On the other hand, Ozkan
and Turksen [25] identified that the upper and lower value of m is
1.4 and 2.6, respectively. Chan and Cheung [26] suggested that the
value of m should be in [1.25, 1.75] in a study of word recognition.
Also, Bezdek [27] proposed that the optimum selection of m is 2.

e Step 5. The weights of each model in each function is obtained
by using the degree of memberships values in FCM.

- Step 5.1. Determine the fuzziness index parameter,
number of clusters and initial cluster centers.
- Step 5.2. Calculate the membership value with the for-

mula
©Cdzu)\ 7 |
Zk, Vi) \ ™
Hik = Z: (d(lk, Uj)) s
j=1
i=1,2,....,c;k=1,2,...,n (18)

under the constraint; Z,; i = 1,ifug < o — cut,
then wj value will be taken as zero. Z is the input
matrix, v is the cluster centers, d(.) stands for Euclidean
distance function, c is the number of clusters, and m is
the fuzziness parameter in Egs. (1)-(2).

- Step 5.3. Calculate the new cluster centers.

_ D1 Mz
- n

Zk:l Mm
- Step 5.4. Repeat Step 2 and Step 3 until the difference

of clusters between two iterations drops under some
threshold or the number of iterations is reached.

V; (19)

e Step 6. Using the degree of memberships values and the
forecasts that are obtained from different models, MFFs are
calculated with the formula given in Eq. (6).

m
MFFi(z) = Y wyzj,i=1,2,...,c (20)
j=1

w;j = ,i=1,2,...,¢ (21)

ij=1 Mij
where MFF stands for the meta fuzzy function and c stands
for the number of clusters.

e Step 7. Step 6 is repeated for the number of clusters times.

e Step 8. Step 5-7 is repeated for different m and c specifica-
tions.

o Step 9.The function that has the minimum Root Mean Squared
Errors (RMSE) or Mean Absolute Percentage Errors (MAPE) is
selected as the MFFes;.

e Step 10. The forecast are calculated by using MFFps;.

F = MFFbest(ztest) (22)

where F is the forecasts of the MFFs.
3. Evaluation

9 real world time series datasets were analyzed to evaluate
the performance of the MFFs of R-T1FFs. All calculations are done
using R, a statistical programming language. The first dataset is
the Australian Beer Consumption (ABC) dataset [28] which were
observed for each quarter from 1956 to 1994. The next 4 datasets
are from the Istanbul Stock Exchange (BIST100) [29]. The observa-
tions of four datasets were observed daily for the first half of a year
from 2009 to 2012. The last 4 datasets are from Dow Jones stock
exchange. The observations of the Dow Jones index are daily mea-
sured year by year from 2010 to 2013. The summary of the datasets
and parameter selection criteria of R-T1FFs are given Table 1. The
methods are evaluated using MAPE and RMSE. RMSE and MAPE
values are two commonly used evaluation metric in the literature
for forecasting purposes. RMSE aims to measure the magnitude of
the error. It uses the actual and predicted values of a time series in
a distance function to measure. MAPE, as well, uses predicted and
actual values of a time series to measure the average magnitude of
the errors. Both error measures, aim to obtain the average model
forecasting error in observations of a time series and both criteria
range between 0 and infinity. The lower RMSE/MAPE value means
the better forecasting accuracy for both metric. The formulations
of RMSE and MAPE values are given in Egs. (23)-(24)

1< R
RMSE = | P AL (23)
t=1
1< % —%
MAPE = — L. 24
n Z X[ ( )

t=1

where x; is the actual values of the time series and X; is the
forecasts.

The stock index data are known as a complex time series be-
cause there are many factors that can affect stock prices. Because
of mostly non-linear structure of stock index datasets, statistical
approaches usually fail to give accurate results. Therefore, non-
statistical approaches commonly use stock index datasets for the
evaluation of their proposed methods. IEX and DowJones datasets
are chosen in this sense and to be able to compare the forecasting
results of MFFs of R-T1FFs with the existing methods that used the
same datasets previously. ABC is another commonly used dataset
by researchers and it contains both seasonality and trend. There-
fore, ABC, IEX, and DowJones datasets are chosen to be able to
compare the forecasting accuracy of the MFFs of R-T1FFs with the
existing ones.

In order to perform MFFs, R-T1FFs is chosen as an application
method. In other words, different models that are obtained from
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Table 1
Summary of the datasets and parameter selection criteria of R-T1FFs.
Series/Year Obs. AR MA Clusters numbers ntest

1 ABC 147 1-10 1-2 2-10 16
2 BIST100/2009 103 1-5 1-2 2-5 15
3 BIST100/2010 104 1-5 1-2 2-5 15
4 BIST100/2011 106 1-5 1-2 2-5 15
5 BIST100/2012 106 1-5 1-2 2-5 15
6 Dow]Jones/2010 252 1-5 1-2 2-5 10
7 DowJones/2011 251 1-5 1-2 2-5 10
8 DowJones/2012 250 1-5 1-2 2-5 10
9 DowJones/2013 252 1-5 1-2 2-5 10

R-T1FFs will be aggregated with MFFs. R-T1FFs is a recently intro-
duced forecasting method by Tak et al. [4]. There are 3 parameters
to be adjusted for R-T1FFs, the number of lags for AR(p) and MA(q)
and the number of clusters, c. Although there are numerous studies
on determining the optimum number of clusters for FCM, there is
no consensus on which one the best is. Therefore, rather than using
amethod for determining the optimum number of clusters, the one
that gives the minimum SSEs is chosen as the optimum number of
clusters for R-T1FFs.

There are many information criteria for selecting the optimum
lag length for ARMA model; root mean squares (RMSE), Schwartz
information criteria (SIC), Hannan-Quinn criterion (HQ), Akaike
information criteria (AIC), and etc. There is no consensus on the
question of “which criteria the best is to determine the optimum
number of lags”. Thus, one approach to this is to use all criteria
cited above and chose the one that has the smallest lag length.
However, in R-T1FFs approach, sum of squares errors is used to
determine the number of lags for AR and MA models. The optimum
numbers of lags for AR and MA are searched iteratively and the
ones that have the smallest SSEs are chosen. However, in the
evaluation part of the proposed method, we are not looking for the
best sets of lags for AR and MA models, we are randomly selecting
models with different parameter specifications because we are
aggregating numerous models that are obtained with different sets
of lags lengths and the cluster numbers. Optimum numbers of p, g,
and c, which gives the minimum SSEs, are searched iteratively in
R-T1FFs. For each dataset, some cut-off (RMSE/MAPE) value is de-
termined and 10 models for each dataset under some RMSE/MAPE
value is stored. The one that has the best RMSE/MAPE, the one
that has the worst RMSE/MAPE value, and randomly 8 models are
selected from the storage as an input matrix (Z) for MFFs.

There are two parameters to be adjusted in MFFs; the fuzziness
parameter (m) and the number of clusters (c). The fuzziness pa-
rameter is varied from 1.3 and 3 with an increase rate of 0.1 and
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Fig. 1. Line plot of ABC dataset.

the number of clusters is varied from 2 to 5. The m and ¢ which
give the best outcomes, in terms of RMSE/MAPE, are selected for
MFFs.

3.1. ABC dataset

In the first evaluation, the ABC dataset was used. This dataset
consists of 148 observations that were observed quarterly from
1956 to 1994. The line plot of the ABC dataset is given in Fig. 1.

In the training phase of the R-T1FFs, the last 16 observations
were left for the test set (Y ) for ABC and 10 models were ob-
tained with different parameter (p, g, c) specifications. 16 data
points are forecasted by using trained models and given in Ta-
ble 2. In order to obtain MFFs and MFF., the first half of 16
forecasts of the models are used as training set, Z;, (see Table 3).
The last 8 observations (Zs ) (see Table 4) are used to be able
to compare the performance of the proposed method with the
existing methods. Winter’s multiplicative exponential smoothing
(WMES), SARIMA [30], Feed-Forward Artificial Neural Network
(FFANN), Adaptive-Network-based Fuzzy Inference Systems (AN-
FIS) [31], Modified ANFIS (MANFIS) [32], Autoregressive ANFIS
(AR-ANFIS) [33], and R-T1FF [4], which used the ABC datasets as
applications previously, are selected to compare the performance
of MFFs and these results are quoted from [4].

The algorithm searched for the best models when the number of
clusters is varied from 2 to 5 and the fuzziness parameter is varied
from 1.3 to 3 with the increase rate of 0.1 for ABC dataset. Under
these conditions, the function which has the minimum RMSE value
is obtained when the number of clusters (functions) is 3 and the
fuzziness parameter is 1.4. The weights of the models, which are

Table 2
10 different forecasting results of the R-T1FF for the ABC dataset.

Actual a b c d e f g h i j

430.5 441.851 470.486 471.499 468.161 467.927 462.902 437.102 442.820 410.151 480.045
600 524.271 543.559 568.204 539.864 528.573 554.725 554.732 554.440 594.661 566.570
464.5 403.488 422.800 517.472 479.828 493.606 493919 461.061 477.330 492.278 483.811
423.6 481.151 491.726 404.833 430.096 419.131 441.908 448.495 443.470 379.198 417.403
437 427.204 455.920 422.259 500.954 499.691 441.356 419.611 422.460 435.409 460.859
574 543.018 563.500 605.301 530.089 524.607 585.824 579.569 571.210 600.818 586.967
443 386.201 399.871 467.588 471.466 458.572 456.075 443.136 463.850 450.811 430.541
410 463.752 478.193 355.220 419.191 418.268 409.686 418.853 410.470 372.250 430.060
420 427.073 454.269 431.630 456.973 458.331 451.447 428.554 420.020 416.309 443.438
532 518.738 537.956 567.749 503.910 517.483 553.002 555.769 551.340 570.405 568.157
432 370.634 384.878 418.941 455.676 424.240 423.280 424.715 436.370 451.239 404.538
420 439.149 454.504 343.182 393.059 406.850 394.730 400.075 390.610 361.471 428.945
411 407.519 433.294 427.059 428.594 444784 443,988 409.558 398.690 416.145 419.524
512 493.369 511.786 526.537 498.236 497.189 522.275 511.579 517.620 506.062 528.857
449 369.602 384.930 433.857 457.612 436.258 424613 421.309 430.760 450.367 402.704
382 435.946 451.793 392.393 377.730 405.179 417.800 415.594 408.270 374.640 437.313
RMSE 47.000 44.000 34.400 31.870 33.560 24.805 19.561 19.210 25.976 29.079
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Table 3
Training dataset (Zy4, ) for MFFs.
Actual a b C d e f g h i j
4305 441851 470486 471499  468.161  467.927 462902  437.102  442.820  410.151  480.045
600 524271 543559 568204  539.864 528573 554725 554732 554440 594661  566.570
464.5 403.488  422.800 517.472  479.828 493606 493919  461.061  477.330  492.278  483.811
4236 481.151 491726 404833 430096  419.131 441908 448495 443470  379.198  417.403
437 427204 455920 422259 500954  499.691  441.356 419611 422460 435409  460.859
574 543,018  563.500  605.301 530089  524.607 585.824 579569 571210  600.818  586.967
443 386.201  399.871 467588 471466 458572  456.075  443.136  463.850  450.811  430.541
410 463752 478193 355220  419.191 418268  409.686  418.853 410470  372.250  430.060
Table 4
Training dataset (Zs ) for MFFs.
Actual a b c d e f g h i j
420 427073 454269 431630 456973 458331 451447 428554 420020 416309  443.438
532 518738  537.956  567.749 503910 517.483  553.002 555769  551.340 570405  568.157
432 370.634  384.878 418941 455676 424240 423280 424715 436370 451239  404.538
420 439.149 454504  343.182  393.059  406.850 394730  400.075 390610 361471  428.945
411 407519 433294  427.059 428594 444784 443988  409.558  398.690  416.145  419.524
512 493369 511786 526537 498236  497.189 522275 511579  517.620  506.062  528.857
449 369.602 384930 433857  457.612 436258 424613 421309 430760  450.367  402.704
382 435946 451793 392393  377.730  405.179  417.800 415594 408270 374640  437.313
RMSE  41.731 41973 32.193 22.455 22.286 25,531 19.319 17.546 25.986 32.114
MAPE  0.074 0.083 0.0546 0.044 0.046 0.055 0.0354 0.0333 0.0389 0.0638
Table 5 3.2. BIST100 datasets
The weights of the models in functions and RMSE values of the functions for Zyi,.
Model MFE, MEE MFEs There are 4 datasets year by year from 2009 to 2012 for BIST100.
ta) gjgg’ 8:888 8:888 To obtain 10 models from R-T1FF, the number of clusters was
c 0.000 0.476 0.000 varied from 2 to 5, the AR lag was varied from 1 to 5, and the
d 0.000 0.000 0.174 MA lag was varied from 1 to 2. The last 15 observations for all
e 0.000 0.000 0.171 BIST100 datasets are selected as the test dataset (Y ). The input
; g'ggg 8'888 g'}zg matrix (Z) of MFFs are obtained from the 15 point forecasts of 10
h 0.000 0.000 0.164 models. The first 8 observations of Z is selected as the training
i 0.001 0.495 0.002 matrix (Zgyqn) in order to determine the weights of the models
j 0.008 0.029 0.166 in functions and MFF,.;. The last 7 observations are left for test
RMSE 47.452 27.484 24-023* dataset (Zgs ) to evaluate the performance of the proposed method
MAPE 0.091 0.053 0.041 with the existing methods. ARIMA [30], Exponential Smoothing
(ES) [34], Multilayer Perceptron ANN (MLP-ANN), Fuzzy Functions
(FF) [5], Fuzzy Time Series Network (FTS-N) [35], and R-T1FF [4],
Table 6 . L. .
Forecasts of MFFs for ABC dataset and RMSE and MAPE values of the functions. which used the BIST100 datasets as appllcatlons prev1ously, are
Test MFF, MFF, MFFs selected to compare the performance of MFFs. ‘ .

5 12067 9439 123,69 For MFFs, there are two pararpeters to be adjusted; fuzzmess
10 52869 56908 541.04 value (m) and the number of functions (c). The number of functions
1 378.01 43451 428.40 is varied from 2 to 5 and the fuzziness value is varied from 1.3 to 3
12 446.62 354.75 40223 with the increase rate of 0.1. The detailed results are given for the
13 420.39 42143 424.86 datasets of 2009 for BIST100. Only the input matrices and formal
}g gg;g Z}S:g 25;23 comparative tables are given for the rest of the datasets of BIST100.
16 443.77 384.92 409.91
RMSE 4056 27.06 17.07*

MAPE 0.0757 0.0376 0.0344* 3.2.1. 2009

calculated with Eq. (21), in functions and the RMSE and MAPE
values of the functions for Z;,;, are given in Table 5.

Table 5 reveals that the best MFF is the third function in terms
of RMSE and MAPE values. Therefore, forecasts are calculated by
using MFFyes = MFF3. MFFys; is given in Eq. (25) and the forecast-
ing results of MFFy.; and the other functions are given in Table 6.

MFFyeqt = MFF; = 0.174%d +--- +0.102 %1 +0.166 %j  (25)

In order to evaluate the performance of the proposed method
with the existing methods Table 7 is given. In terms of RMSE and
MAPE values, it is obvious that the best forecasting results are
obtained from the proposed method.

For BIST100 dataset in 2009, 15 forecasts of 10 models are used
as the input matrix, Z. The first 8 observations of Z is used as
training matrix (Zg4,) and the last 7 observations are used as the
test dataset (Zi: ) and they are given in Tables 8 and 9, respectively.

The best MFFs are obtained when m = 2.4 and ¢ = 3. The
weight matrix that are calculated by FCM for Z;, is given in
Table 3.

The best function is determined from MAPE values of the MFFs
for Zy,qin. In this case, MFFy.s is selected as MFF; (see Table 10). Thus,
the forecasts of the proposed methods is obtained by using MFFjes;.
MFFyes: is given in Eq. (26) and the corresponding forecasting
results and the other functions are given in Table 11.

MFFyest = MFF, = 0.04 % @+ -+ +0.20 %1+ 0.21 %] (26)

6 existing forecasting methods are compared with the proposed
method in Table 12. It is obvious that the MFF;.s of the proposed
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Table 7

Forecasting results and RMSE/MAPE values of existing methods and MFFjs;.
Test WMES SARIMA FFANN ANFIS MANFIS AR-ANFIS T1FF MFFpes;
420 465.4 461.01 448.87 445.0127 430.31 419.428 431.60 443,69
532 589.74 588.96 560.04 562.94 565.18 570.378 559.41 541.04
432 514.96 496.77 447.01 459.14 452.05 440.589 444.08 428.40
420 455.89 454.64 408.64 416.16 392.14 400.06 394.99 402.23
411 471.15 465.46 428.11 431.70 419.33 413.925 409.72 424.86
512 597 594.71 537.70 544.98 536.88 549.318 525.60 512.52
449 521.28 501.67 438.43 44431 446.32 441.676 43891 429.31
382 461.46 459.17 420.58 426.01 406.64 413.59 409.07 409.91
RMSE 67.032 60.06 23.79 26.95 2147 23.44 18.30 17.07*
MAPE 0.147 0.13 0.050 0.054 0.0424 0.040 0.036 0.034*

Table 8

Training dataset (Zy., ) for 2009.
Test a b c d e f g h i j

32806 32664.29 33398.2 32898 33420.2 33072.6 33200.3 33170.4 331329 337314 33269.3
32203 32594.61 32876.5 32822.2 33109.5 32938.4 32647.9 32708 329335 32558.4 321216
33043 31662.56 31685.1 321718 32768.5 32601.9 32883.6 322344 324421 32736.7 32699.8
32829 32786.4 32774.8 33050.5 32815.8 331195 325441 33142.7 33207.1 32678 32648.3
33095 33133.76 32884 32897.1 332303 32837.1 33271 332452 33012.1 33769.5 33187.7
33485 33064.32 33037.2 33188.1 33250.8 332522 33230.5 33446.1 332748 33622.9 334113
33666 33160.11 33561.6 33578.9 33641.9 33604.7 33424.3 33852 33661.3 33970.6 33793.7
35140 33657.81 33644 33752.8 33845 337434 33833 34062.1 33848.8 34099.2 33867

Table 9

Test dataset (Zs ) for 2009.
Test a b c d e f g h i j
34721 35364.49 35047.95 34687.79  34455.7 35052.9 34458.45 35196.19 3435233 35180.2 345344
35015 35261.99 34516.6 34836.9 34992.4 34797.1  35348.2 34882.9 34902 35495.7  34964.2
35408 35335.15 35346 35112 35140 35117.1 35408.5 354111 35201.7 35026.4 35076.3
34861 3485844  35268.2 35522.7 35326.4 354884 35211.6 35506.8 35593.3 34819.7  34849.3
35169 35317.37 34982 34991.2 34751 349235 35468.3 34821.5 35042.8 34799.2 347395

35021 35280.65 35108.8 35292.7 34896.7 352443 35387.4 35169.4 353545 34849.2  34420.1
35003 34997.85 35075.1 35148.9 34808.7 35106.8  35228.2 34968.7 35203.9 35200.3 34648
RMSE  395.8234  420.1002 303.8493 270.3831  343.01 394.37 373.504 392.70 345.84 200,9087
MAPE  0.0095 0.0108 0.00683 0.00739 0.0087 0.0097 0.00935 0.0093 0.00861  0.00487

Table 10 Table 11
Weights of the models in functions and RMSE values of the functions for Zgi,. Foreijasltmg results and RMSE/MAPE values of the functions.
Model MFF, MFF, MFF; Mode MEFFy MFF, MEFFs
9 35084.72 34740.53 34865.10
E ggg ggg 832 10 34937.89 35112.87 34974.52
c 0'12 0'05 0'14 11 35205.86 35195.13 3526291
d 0'11 0'13 0'06 12 35373.75 35112.96 35169.56
o 0'18 0'04 0'05 13 34964.67 34949.34 35051.79
¢ 0'07 0.18 0.06 14 35166.00 34961.31 35142.70
0'12 0'09 0'08 15 35067.51 34996.57 35032.74
G 021 000 0.00 RMSE 269.64 156.12° 154.96
i 005 0.20 0.06 MAPE 0.0064 0.0035 0.0037
j 0.05 0.21 0.06
RMSE 575.64 531.48* 637.11
MAPE 0.012 0.011* 0.013
3.2.2. 2010

) The 15 forecasts of the 10 models are used as the input matrix
methods outperforms other methods in terms of both RMSE and (Z) of MFFs. The input matrix is divided into two training (Zeain)

MAPE values. and test (Zg ) sets. Tables 13-14 represents the training and test
sets respectively for 2010.

Table 12

Forecasting results and RMSE/MAPE values of existing methods and MFFs.
Test ARIMA ES MLP-ANN FF FTS-N R-T1FF MFFpegt
34721 35140 35139.7 34926.15 35353.47 34559.35 34676.64 34740.53
35015 34721 34720.55 34547.22 35065.66 34999.72 35140.3 35112.87
35408 35015 35014.5 34887.24 35247.61 35042.18 35396.82 35195.13
34861 35408 35407.68 35108.24 35720.93 35257.93 35186.02 35112.96
35169 34861 34860.56 34727.41 35196.88 35186.01 34850.95 34949.34
35021 35169 35168.73 35002.28 35444.51 35103.95 34719.4 34961.31
35003 35021 35021.01 34844.72 35369.76 35103.37 34799.38 34996.57
RMSE 3449114 344.9628 340.929 460.1925 218.7582 225.8351 156.12*

MAPE 0.0087 0.0087 0.0084 0.0103 0.0046 0.0054 0.0035*




¢ = 3 for Zygin. The best function (MFFys ) is determined as the
first function that is given in Eq. (27).

MFFpese = MFF; = 0.04%xa+0.14%b+---+0.08xi+0.11xj (27)

We are able to say that the performance of the proposed method
is better than all existing forecasting methods in terms of RMSE
value in Table 15.

3.2.3. 2011

There are 106 observations in BIST100 dataset for 2011 and the
last 15 observations are taken as the test dataset. Using R-T1FF
with different parameter specifications, 10 models are obtained.
The first 8 observations of the 10 models are used as the training
and the rest of the observations are use as the test dataset. Training
and test sets are given in Tables 16-17, respectively.

The minimum RMSE value is obtained whenm = 2.6 and ¢ = 4.
The weights of the models in functions are obtained by using the
degree of membership values of the models in clusters for Zyis.
The best function (MFF ) is determined as the third meta fuzzy
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Table 13

Training dataset (Zy,;,) for 2010.
Test a b C d e f g h i j
56448 55203.7 54002.99 54505.2 54651.9 557129 54246 55156.3 54278.5 54508.2 53646.6
56462 55430.2 57199.94 55530.5 56039.4 54702.9 56567.6 56171.6 56015.6 55216.4 55535.8
57976 55649.8 56313.11 56206.9 55434.7 54892.8 56192.2 55902.7 56263.6 55566.1 56928.2
57930 56654.4 57872.39 57369.6 58269 55501.2 56901.2 56574.6 575915 56468.4 57810.5
55748 57159.9 57853.95 57775.3 57546.6 56517.8 57313.8 56717.9 57859 57165.4 58141
56071 57115.7 56787.94 56875 57289.3 57332.7 57030 56692.5 56863.6 56906.5 56457.9
56978 56273.4 57608.18 56283.1 56847.7 56357.4 57235.6 56344.1 56190.2 56295 56074
54450 56254.6 56450.19 56784 56583.8 55697.2 57358.2 56444.5 56791.6 56427.7 57002.6

Table 14

Test dataset (Zgs ) for 2010.
Test a b c d e f g h i j
54112 55002.7 54570.12 55544.2 55626.9 55155.3 55481.2 54994 54980.4 55435.2 55263
54558 54175.8 55021.08 54683.5 55289.4 54194.5 55026.7 54385.5 54296.7 54655 54275
52257 54000.3 54351.85 54665.1 53843.5 53601.7 54938.6 54223.6 54475.5 544571 54687.1
54104 52585.6 52194.94 53381.9 542354 52911.8 53241.6 52660.6 52683.5 53350.1 52985.3
54498 53165.3 54032.2 53818.7 52800 52716.4 54286.2 53144.3 53822.1 53560.2 53850.2
55234 53692.7 54394.35 54294.3 54554.3 53315.4 54674.9 53360.7 54344.7 53956.1 54691.7
54385 54329.8 56158.79 54798.3 55279.5 53932.1 55447.3 53879.2 55024 54522.4 55152.8
RMSE 1221.17 1337.67 1189.41 1165.54 1282.34 1282.58 1328.60 1159.91 1177.19 1187.123
MAPE 0.020 0.021 0.018 0.019 0.021 0.019 0.022 0.019 0.018 0.018

Table 15

Forecasting results and RMSE/MAPE values of existing methods and MFFj,s;.
Test ARIMA ES MLP-ANN FF FTS-N R-T1FF MFFpest
54112 54450 54449.936 54397.950 53543.007 55431.528 52984.810 55207.13
54558 54112 54111.607 54057.710 53788.681 54495.642 54419.000 54686.15
52257 54558 54558.150 54507.230 54475.042 54629.554 53166.650 54358.55
54104 52257 52257.121 52274930 51697.376 53634.931 51463.420 53046.54
54498 54104 54103.459 54049.690 54377.843 53584.444 54183.150 53577.29
55234 54498 54497.941 54446.490 54445.135 53960.884 54071.150 54205.09
54385 55234 55233.664 55194.750 55221.339 54360.633 55612.920 54989.81
RMSE 1221.06 1221.09 1208.2 1360.85 1198.22 1311.99 1135.32*
MAPE 00183 0.018 0.018 0.020 0.017* 0.020 0.018

Table 16

Training dataset (Zy;,) for 2011.
Test a b c d e f g h i j
67260 67488.8 67664.6 67506.8 67118.3 67485.4 67862 67500.5 67782.3 67820.8 67553.7
65643 66944.7 67173.5 66922.2 66669.3 66957.9 67384.6 66803.8 67268.4 67314.6 66610.2
66535 652929 66070.5 65300.2 66316.6 65871.7 66432.9 65378 66282.9 66738.1 66147.6
64585 66193.5 65714.5 66207.1 64761.7 64705.4 66029.4 65835.9 65903.6 65721.5 65513.3
65418 64250.2 65068.7 64244.6 65036.5 65314.7 65326.4 64415.3 65195.1 65393.3 64185.8
65385 65073.5 64589.6 65066.1 63952.1 65160.1 64957.5 65265.3 64819.6 64517.4 64940.6
63733 65045.3 64822.4 65044.1 63921.9 65215.8 64941.2 64881 64859.6 64282.4 63355.5
63299 63401.6 64115.9 63391.6 64487.2 63266.3 64317.2 64224.4 64208.1 64307.7 64101.4

The minimum RMSE value is obtained when m = 2.5 and function and given in Eq. (28).

MFFpest = MFF3 = 0.06%xb+0.51xd+---+0.09%i+0.18x%j (28)

Comparing MFF,.;s with the existing methods in Table 18, it
is obvious that the best and second best forecasts are obtained
from the proposed method in terms of RMSE and MAPE values,
respectively.

3.24. 2012

The number of observations is 106 in BIST100 dataset for 2012.
The forecasting results of 10 models of R-T1FFs method is given in
Tables 19-20 as training and test datasets, respectively.

The minimum RMSE value is obtained whenm = 2 and ¢ = 3.
MFFys; for 2012 is given in Eq. (29).

MFFyess = MFF3 = 0.04 % i + 0.96 % j (29)

Comparing MFF,.s; with the existing methods in Table 21, it is ob-
vious that the best and second best forecasts are obtained from the
proposed method in terms of MAPE and RMSE values, respectively.
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Table 17

Test dataset (Zs ) for 2011.
Test a b C d e f g h i j
63210 62968.8 63220.3 62965.1 63201 62989.6 63574.9 62960.3 63418.5 63777.3 63427.7
64561 62879.4 62686.5 62871.2 62430.2 62947.4 63099 63314.2 63018.6 62949.9 62495
63609 64242.4 62754 64326.7 63591.5 64247.5 63438.4 64000 64042.1 63697 63443.6
63755 63312.3 63802.2 63457 63183.2 63221.7 63792.7 62856.5 63681 64253.1 63557.2
62407 63448.5 62946.6 63572.1 63351.6 63079.2 63255.5 62789 63642.4 64630.3 63538.2
61492 62182.5 63391.2 62616.6 62117 62252.4 62962.3 62934.6 62161 62596.5 62527.2

63046 61209.2 62083.6 61411.3 61396.2 61180.1 61326.9 62461.2 61357.6 63358.2 61181.7

RMSE 1079.77 1022.34 1091.57 954.668 907.421 1043.02 918.301 987.321 1031.13 991.453

MAPE 0.0148 0.0140 0.0156 0.0134 0.0142

0.0138 0.0128 0.0132 0.0145 0.0159

Table 18

Forecasting results and RMSE/MAPE values of existing methods and MFFs.
Test ARIMA ES MLP-ANN FF FTS-N R-T1FF MFFpest
63210 63299 63298.61 63615.31 63500.67 63120.65 62597.67 63306.5
64561 63210 63209.89 63782.23 63121.86 62925.94 62356.36 62872.82
63609 64561 64561.3 64968.54 64690.38 63661.87 63079.91 63366.36
63755 63609 63609.38 63569.83 63565.97 63571.09 63262.51 63161.82
62407 63755 63755.34 64074.42 64245.59 63339.12 62956.39 63319.68
61492 62407 62407.52 62966.45 62360.53 62617.5 62324.37 62680.64
63046 61492 61491.78 62465.25 61782.2 61648.56 61212.24 62262.08
RMSE 1057.62 1057.84 1065.36 1139.72 986.08 1202.09 935.82
MAPE 0.0144 0.0144 0.0147 0.0158 0.0123 0.0159 0.0125

Table 19

Training dataset (Zy.;, ) for 2012.
Test a b c d e f g h i j

58873 58571.8 58575.5 58375.1 58201.8 58338.4 58154.4 58719.7 58705.3 58547.4 58250.8
57854 58645.8 58653.2 58757.9 58196.4 58406.5 58258.9 58774.4 58778.3 58565.7 57440.3

57453 57630.5 57633.6 57495.1 57726.2 57777
58101 57235.6 572249 57299.3 57387.5 57354

57687.9 57761.6 57756.8 57677.1 57754.1
57193.3 573771 57356.7 57262.9 58171

57331 57899.7 57832.4 57846.7 57535.7 57614.9 57395.7 58087.9 58001.9 57751 575354
56936 571374 57057.3 57176.5 57193.6 57223.2 57090.3 57330.1 572334 571374 56661.6
56540 56724.5 56700.5 56653 56848.3 56807.6 56649.1 56870.2 56840.2 56731.9 57317.2

57079 56322.1 56322.9 56325.9 56474.9 56385.6 56233 56450.3 56445.4 56323.6 56831

Table 20
Test dataset (Zs ) for 2012.
Test a b c d e f g h i j

55734 56852.8 56871.7 56786.3 56522.6 56599.4 56398.3 56968.1 56983.9 56741.9 56511
54917 55519.1 55522.1 55527.7 55857.5 55734.9 55671 55646.4 55641 55573 55683.4
54810 54702.5 54712.4 54644.7 55234 54955.1 54859.1 54820.8 54825.9 54768.6 55166.9

54844 54612.6 54571.5 54646.7 54889.1 54653

54479.8 54783.6 54718.1 54593.9 54454.5

55450 54682.3 54529.8 54757.1 54746.7 54591.6 54428.9 54981.8 54749.7 54594.5 54635.1
55125 55288.7 55124.1 55369.1 55029.4 54950.9 54803 55613.4 55353.9 55091.7 55172
55099 54979.2 54774.2 55121.9 55046.8 55003.1 54914.4 55365 55028.2 54936.7 54867.2

RMSE 574.433 620.671 545.992 559.922 567.165 499.324 607.959 615.310 569.436 465.417

MAPE 0.0080 0.0087 0.0077 0.0079 0.0081

0.0072 0.0084 0.0080 0.0078 0.0074

Table 21

Forecasting results and RMSE/MAPE values of existing methods and MFFjes.
Test ARIMA ES MLP-ANN FF FTS-N R-T1FF MFFpes
55734 57079 57079.46 57421.46 57781.04 56717.86 56461.83 56472.86
54917 55734 55734.36 56014.45 56433.76 56055.82 55329.15 55338.75
54810 54917 54916.62 55218.22 55638.09 55140.42 54546.99 54555.71
54844 54810 54809.94 55143.92 55762.38 54823.27 54533.63 54536
55450 54844 5484393 55185.19 55733.9 54811.12 54731.61 54726.21
55125 55450 55449.5 55823.22 56244.47 55193.66 55193.92 55189.89
55099 55125 55125.29 55452.13 55899.09 55181.59 55460.04 55439.44
RMSE 650.5663 650.7343 844.381 1194.874 631.8026 465.417* 467.1011
MAPE 0.0084 0.0084 0.01243 0.01945 0.0084 0.00739 0.00737*

3.3. Dow Jones datasets

There are 4 datasets for Dow Jones index from 2010 to 2013.
To obtain 10 models from R-T1FF, the number of clusters was
varied from 2 to 5, the AR lag was varied from 1 to 5, and the
MA lag was varied from 1 to 2. The last 10 observations each Dow
Jones datasets are selected as the test dataset (Ygs ). The input

matrix (Z) of MFFs are obtained from the 10 point forecasts of 10
models. The first 6 observations of Z is selected as the training
matrix (Zgqin) in order to determine the weights of the models
in functions and MFF.;. The last 4 observations are left for test
dataset (Zqs ) to evaluate the performance of the proposed method
with the existing methods; ANFISgrid, ANFISsub, MANFIS [32],
T1FF [5].
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Table 22

Training dataset (Zy,;,) for 2010.
Test a b C d e f g h i j
1149191 1150924 1149692 11447.94 11508.6 1150461 11501.48 11506.74 11542.65 11524.84 11461.46
11478.13 1149621 11513.26 1149537 1149894 1149721 11501.37 1151126 11510.08 11510.12 11525.1
11533.16 11486.68 11499.99 11420.47 11485.82 11483.4 1148725 11497.82 1156427 11498.92 11469.43
11559.49 1155289 11525.37 11538.89 11532.86 11530.86 11533.05 11538.34 1157121 1154527 11504.03
1157349 11584.82 11559.2  11538.18 11560.06 11557.92 11559.64 11565.89 1152691 11571.88 11532.97
11555.03 116214  11580.19 11567.66 11564.82 11560.63 11574.13 1158122 11579.32 11573.67 11545.42

Table 23

Test dataset (Zs ) for 2010.
Test a b c d e f g h i j
1157554 11587.86 11579.73 11529.32 11558.87 11556.17 11556.73 11565.74 11613.85 11569.1  11572.72
11585.38  11633.49 11587.79 11559.15 1156557 11558.74 11572.06 11578.47 11647.2  11570.81 11552.09
11569.71 116612  11594.12 11577.85 11568.09 11566.77 11584.86 11591.76 11616.61 11577.46 11583.81
1157751 11600.34 11595.19 11539.11 1158351 11577.85 11569.66 11578.07 11635.35 11591.52 11585.33
RMSE 53.287 15.263 33.035 13.313 16.535 14.339 12,553 52.044 11.293 18.548
MAPE 0.00377  0.00105  0.00257  0.00095 0.00106 0.00119  0.00085  0.00442  0.00092  0.00125

Table 24 Table 26
Weights of the models in functions and RMSE values of the functions for Z;qi,. Forecasting results and RMSE/MAPE values of existing methods and MFFjs.

Model MFF, MFF, MFF; MFF, Test ANFISgrid ~ ANFISsub ~ MANFIS T1FF MFFest

a 0 0 0 0.987 1157554  11571.59 11587.34  11563.86  11562.97  11564.4

b 0.165 0 0 0 11585.38  11601.37 11606.63 1158440  11580.95  11572.12

c 0 0 0.476 0 11569.71  11591.92 11617.79 1159425 1158956  11580.52

d 0.167 0 0 0 1157751  11546.67 11606.31 1157856 1157585  11582.6

e 0.165 0 0 0 RMSE 20.71 30.54 13.61 11.98 1052

f 0.167 0 0 0 MAPE 0.0016 0.0024 0.0008 0.0008 0.0008

g 0.167 0.001 0.001 0.002

h 0 0.992 0 0

i 0.165 0.004 0.001 0.009

J 0.005 0.003 0522 0.002 4 existing forecasting methods are compared with the proposed

* . . .
m‘; 3%330* (3)56328 3%3‘314 (3)‘8354 method in Table 26. It is obvious that the MFFy; of the proposed
. - - - methods outperforms other methods in terms of both RMSE and
MAPE values.
Table 25
Forecasts of MFFs for 2010 and RMSE and MAPE values of the functions. 3.3.2. 2011 . )

Model MFF,* MEFF, MEFF; MFE, There are 251 observations in Dow Jones dataset for 2011 and
= 115644 11613.49 11552.04 1158761 the last 10 observatlons'are taken as the te;t da'taset (Yiest ). Using
8 11572.12 11646.52 11555.49 11632.63 Yirqin, 10 models are obtained from R-T1FF with different parameter
9 11580.52 11616.32 11580.97 11660.12 specifications. In order to obtain the input matrix (Z) of MFFs,

10 11582.6 11634.96 11563.32 11600.18 10 forecast are calculated for each model that are obtained from

RMSE 10.52* 51.60 21.06 52.60 R-T1FFs. The fir for f the 10 models ar h

MAPE 0.0009° 0.0044 0.0017 00037 s. The first 6 forecasts of the 10 models are used as the

The number of clusters is varied from 2 to 5 and the fuzziness
value is varied from 1.3 to 3 with the increase rate of 0.1 for MFFs.
Although the detailed results are given for the dataset of 2010,
only the input matrices and formal comparison results are given
for 2011-2013.

3.3.1. 2010

For Dow Jones dataset in 2010, 10 forecasts of 10 models are
used as the input matrix, Z. The first 6 observations of Z is used
as training matrix (Zqin) and the last 4 observations are used as
the test dataset (Z.s) and they are given in Tables 22 and 23,
respectively.

The best MFFs are obtained when m = 1.4 and ¢ = 4. The
weight matrix that are calculated by FCM for Zq, is given in
Table 24. The best function is determined from MAPE values of the
MFFs for Zqin. In this case, MFF; is selected as MFFy.s. Thus, the
forecasts of the proposed methods is obtained by using MFFpes;.
MFFy is given in Eq. (30) and the corresponding forecasting
results and the results of other functions are given in Table 25.

MFFpee = MFF; = 0.165xa+ --- 4+ 0.165 % i + 0.005 * j (30)

training (Zqin) and the rest of the forecasts are used as the test
(Ztest ) datasets. Training and test sets are given in Tables 27-28,
respectively.

The best MFFs are obtained when m = 1.4 and ¢ = 5. The
weights of the models in functions are obtained by using the degree
of membership values of the models in clusters for Z;4,. The best
function (MFFy ) is determined as the fifth meta fuzzy function
and given in Eq. (31).

MFFpess = MFFs = 0.85%b+0.143 x g

+ 0.003h + 0.01 % i+ 0.03 % j (31)

We are able to say that the performance of the proposed method is
better than all existing forecasting methods in terms of RMSE and
MAPE values in Table 29.

3.3.3. 2012

The 10 forecasts of the 10 models are used as the input matrix
(Z) of MFFs. The input matrix is divided into two training (Zn)
and test (Zgs ) sets. Tables 30-31 represents the training and test
sets, respectively.

Training dataset is clustered by using FCM and the weights of
the models that are calculated from the degrees of memberships
are obtained for each function. The best set of meta fuzzy functions
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Table 27
Training dataset (Zgn) for 2011.
Test a b C d e f g h i j
11866.39 11857 1185571 11897.39 11850.31 11878.25 11882.41 11926.76 11972.49 1183398 11875.74
11766.26 11854.57 11885.18 11892.79 11838.86 11860.4 11866.2 11907.15 1193458 11855.61 11860.47
12103.58 11749.06 11949.04 11789.68 11718.03 11748.25 11758.53 11840.78 11854.75 11760.46 1175251
12107.74 12092.35 12010.28 12129.22 12085.48 12176.49 1215952 12017.95 12181.51 12084.2 12162.54
12169.65 12098.85 12423.39 12133.78 12094.52 12086.54 12103.93 1223223 12183.75 12082.13 12088.14
12294 12165.39 1234528 12196.03 12190.67 12193.46 12192.07 12211.43 12236.02 12125 12190.63
Table 28
Test dataset (Zs ) for 2011.
Test a b C d e f g h i j
1229135 12283.01 12349.38 12320.18 12265.27 12302.62 12302.62 12292.61 12375.88 12276.75 12296.55
1215141 12266.55 12295.66 12316.39 12218.12 12280.77 12286.05 1231551 12387.26 12300.29 12282.49
12287.04 12135.2 12271.84 12176.54 12118.61 12132.35 12143.89 12185.22 12235.38 12141.79 12141.97
1221756 12258.35 12254.01 123116 12194.92 12270.37 12260.35 12250.39 12387.7 12302.51 12259.55
RMSE 97.53 80.21 110.80 92.21 104.38 100.72 97.95 153.61 112.57 100.02
MAPE 0.0065 0.0052 0.0082 0.0058 0.0071 0.0068 0.0061 0.0111 0.0081 0.0066
Table 29 Table 32
Forecasting results and RMSE/MAPE values of existing methods and MFFjs. Forecasting results and RMSE/MAPE values of existing methods and MFFes;.
Test ANFISgrid ~ ANFISsub  MANFIS T1FF MFFpeg Test ANFISgrid ~ ANFISsub  MANFIS T1FF MFFpes:
12291.35 12268.61 12329.13 12285.16 12271.36 12341.09 13114.59 13171.73 13119.31 13152.26 13111.70 13074.81
12151.41 12285.36 12296.95 12319.05 12285.72 12298.72 13096.31 13183.93 13091.44 13123.75 13091.97 13090.32
12287.04 12115.69 12149.06 12218.30 12150.31 12258.83 12938.11 12982.05 13070.81 13104.55 13082.15 13029.86
12217.56 12259.14 12290.89 12274.94 12261.81 12253.92 13104.14 12947.44 12929.84 12966.91 12956.00 12949.25
RMSE 111.30 108.43 95.08 98.86 81.07 RMSE 96.73 109.59 110.35 103.34 92.23
MAPE 0.0076 0.0081 0.0061 0.0069 0.0054 MAPE 0.0066 0.0061 0.0071 0.0057 0.0056
are obtained when m = 3 and ¢ = 5. The best meta fuzzy function + 0.015 %14 0.013 % j (33)

is detected as the third function and it is given in Eq. (32).
MFFpest = MFF; = 0.85% b+ 0.143 % g
+ 0.003h 4 0.01 % i+ 0.03 xj (32)

Table 32 is given to compare the results of the existing methods
and the proposed method. The table shows that the proposed
method outperforms the other methods in terms of both RMSE and
MAPE values.

3.34. 2013

For 2013, the training and test datasets for MFFs are given in
Tables 33-34, respectively. The best set of MFFs are obtained when
m = 2 and ¢ = 4. The best function is determined as the fourth
function for Z4i,. Thus the MFEF),; is the fourth function of the MFFs
and given in Eq. (33).

MFFpet = MFF; = 0.39 % ¢ + 0.304 x g + 0.278 % h

Table 35 is given to compare the results of the existing methods and
the proposed method. The table shows that the proposed method
has better forecasting performances in terms of both RMSE and
MAPE values.

4. Conclusions

A naive approach based on FCM is introduced to aggregate the
methods in the paper. MFFs are able to cluster the methods in
functions. For example, while the methods that perform better
for a dataset is collected in a function, the methods that perform
worse is collected in a different function with certain degrees of
memberships values. The advantages of the MFFs are listed below.

e MFFs is the first introduced approach that aims to aggre-
gate methods into functions. MFFs are introduced with an
assumption that each method has its own understanding of a

Table 30

Training dataset (Zyqin ) for 2012.
Test a b c d e f g h i j
13235.39 13056.98 13176.11 13038.39 13073.12 13113.15 13209.58 13235.87 13148.85 13073.29 13042.41
13350.96 13224.84 13246.35 13233.24 13228.72 13229.49 13345.16 13284.5 13224.6 13161.99 13147.94
13251.97 13278.11 13383.79 13252.59 13290.75 13346.29 13438.05 13308.66 13340.09 13276.86 13330.3
13311.72 13246.44 13274.32 13257.43 13255.6 13223.93 13308.26 13235.23 13283.47 13250.49 13274.17
13190.84 13239.1 13338.54 13209.6 13247.12 13301.04 13367.06 13427.85 13304.08 13219.84 13175.33
13139.08 13168.5 13207.68 13190.34 13178.6 13157.27 13262.86 13198.67 13206.96 13191.14 13218.59

Table 31

Test dataset (Zs ) for 2012.
Test a b c d e f g h i j
13114.59 13071.78 13163.95 13035.07 13077.51 13114.57 13218.85 13262.62 13153.67 13074.91 13152.67
13096.31 13086.45 13131.89 13115.85 13098.23 13093.7 13189.57 13185.82 13115.04 13077.62 12982.81
12938.11 13039.59 13123.11 12994.85 13044.86 13076.02 13163.45 13142.86 13103.29 13043.67 13081.43
13104.14 12899.95 12952.87 12937.57 12911.22 12897.47 13005.45 13001.49 12965.96 12922.84 13038.9
RMSE 116.11 123.30 97.04 111.79 124.24 141.50 143,51 109.84 107.16 98.91
MAPE 0.0069 0.0081 0.0062 0.0065 0.0067 0.0100 0.0104 0.0069 0.0066 0.0069




12 N. Tak / Applied Soft Computing Journal 73 (2018) 1-13

Table 33
Training dataset (Zgqn) for 2013.
Test a b C d e f g h i j
15875.26 15924.92 15903.44 15919.36 15935.81 15856.47 15989.79 15908.92 15982.18 15832.66 15858.63
16167.97 15920.97 15896.86 15920.98 15898.55 15840.76 15985.11 15949.97 15926.9 15881.37 15887.72
16179.08 16200.91 16184.55 16218.42 16206.11 16146.1 16280.69 16140.39 16242.17 16043.13 16095.08
16221.14 16210.18 16194.1 16230.46 16210.97 16163.67 16291.27 16241.09 16243.89 16170.52 16178.51
16294.61 16257.8 16237.63 16272.24 16258.9 16200.72 16332.8 16277.16 16292 16207.91 16220.33
16357.55 16331.07 16311.87 16346.56 16326.83 16269.35 16407.64 16344.89 16361.56 16266.5 16286.06
Table 34
Test dataset (Zgs ) for 2013.
Test a b c d e f g h i j
16479.88 16390.09 16374.52 16410.98 16389.69 16333.34 1647229 16415.27 1642457 16332.66 16352.38
16478.41 16511.81 16496.75 16534.34 16511.73 16458.25 16595.82 16518.32 16547.13 16427.8 16457.44
16504.29 16511.01 16495.34 16533.47 16509.64 16456.77 16594.71 16562.95 16545 16481.17 16492.45
16576.66 16536.43 16521.29 16560 16534.83 16481.1 16621.23 16581.48 16570.57 16498.68 16514.53
RMSE 52.06 60.38 4745 52.49 91.20 77.47 48.04 4867 37.82 71.03
MAPE 0.0026 0.0028 0.0026 0.0026 0.0047 0.0039 0.0025 0.0026 0.0045 0.0034
Table 35 References
Forecasting results and RMSE/MAPE values of existing methods and MFFys;.
Test ANFISgrid ~ ANFISsub ~ MANFIS T1FF MFFpest [1] G.V. Glass, Primary, secondary, and meta-analysis of research, Educ. Re-
16479.88 16236.68 16281.99 16377.62 16390.06 16414.16 searcher 5 (10) (1976) 3-8, http://dx.doi.org/10.3102/0013189X005010003.
16478.41 16353.20 16365.03 16495.93 16507.48 16530.48 [2] R.DerSimonian, N. Laird, Meta-analysis in clinical trials, Controlled Clin. Trials
1650429  16214.60 16345.41  16503.17 1651077  16544.35 7(3)(1986) 177-188, http://dx.doi.org/10.1016/0197-2456(86)90046-2.
16576.66 16256.59 16357.09 16527.16 16536.35 16567.99 [3] J.C.Bezdek, R. Ehrlich, W. Full, FCM: The fuzzy c-means clustering algorithm,
RMSE 25553 17711 57.48 51.43 46.66 Comput. Geosci. 10 (2-3)(1984) 191-203, http://dx.doi.org/10.1007/s10898-
MAPE 0.0148 0.0104 0.0026 0.0025 0.0025 007-9149-x.

dataset. For example, for a specific purpose like forecasting or
predicting, there are many methods in literature mainly using
the same arguments with different modifications. Therefore,
our assumption is that each method has more or less knowl-
edge for a given dataset.

e One does not need to have a deep understanding of fuzzy set
theory to implement or understand the proposed method.
The only need for implementing the proposed method is to
understand the FCM algorithm.

e MFFs guarantees, at least, the best performance of the meth-
ods that are used. In another word, MFFs are also able to
search for the best method among many. However, MFFs
usually increase the performance of the related methods by
aggregating them into functions in terms of some evaluation
criteria.

Although the aim of the study is to aggregate the methods for a
specific purpose, the models of a method with different parameter
specifications are aggregated as an application in the paper. 9 real
world datasets were chosen for the evaluation. Results showed that
MFFs are able to increase the performance of R-T1FFs. For all nine
datasets, the best performances for forecasting in terms of both
RMSE and MAPE values were obtained from the MFFs approach.
Besides, comparing the results of the proposed method with other
alternative methods in literature, it can be said that MFFs based
R-T1FFs outperforms most of them in terms of both RMSE and
MAPE. Aggregating methods for forecasting and employing the
possibilistic FCM are left for the future work. Besides, aggregation
of regression methods and indices are another future works.
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