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Abstract This paper investigates how changes in chatter
amplitude and frequency depend on process damping effect
in dynamic turning process. For this purpose, the two degrees
of freedom (TDOF) cutting system was modeled, and for an
orthogonal turning system, the process damping model with a
new simple approach was developed. To further explore the
nature of the TDOF cutting model, a numerical simulation of
the process was developed by this model. This simulation was
able to overcome some of the weaknesses of the analytical
model. The equations of motion for this cutting system were
written as linear and nonlinear in the τ -decomposition form.
The variation in the process damping ratios for different work
materials was simply obtained by solving the nonlinear dif-
ferential equations. A series of orthogonal chatter stability
tests were performed for the identification of dynamic cutting
force coefficients, using AISI-1040, Al-7075, and Al-6061
work materials, at a constant spindle speed. Finally, the ex-
perimental results were analyzed and compared with the sim-
ulation model, and it was observed that the results obtained
through the experiments comply with the simulation model
results.

Keywords Chatter vibration . Cutting stability . Process
damping

1 Introduction

Chatter is not desired, and it is formed independently from the
machine tool and the outside environment. Self-excited chat-
ter vibration occurs in metal cutting if the chip width is too
large with respect to the dynamic stiffness of the system.
Under such conditions, these vibrations start and quickly
grow. The cutting force becomes periodically variable,
reaching considerable amplitudes, and chip thickness varies
in the extreme so much that it becomes dissected [1].
According to the literature [2–5], the process damping
occurs due to penetration of the tool in the low cutting
speeds. In the subsequent studies, the focus of the research
on dynamic cutting shifted towards the identification and
modeling of dynamic cutting force coefficients. The results
of the CIRP effort on dynamic cutting are summarized
by Tlusty [4] where the difficulty of the measurements
and the inconsistency of the test data from different labs
are discussed. The contact forces due to flank–wave inter-
action contribute to the dynamics of the cutting process by
increasing the overall damping acting on the system [5–9].
Sisson and Kegg [5] concluded that the edge hone on the
tool, cutting speed, and the clearance angle are the most
important factors that affect process damping. In a re-
cent study, Altintas et al. [10] developed a dynamic force
model which includes chip thickness, velocity, and accelera-
tion terms. They identified dynamic cutting force coefficients
from the series of dynamic cutting tests, where the cutting tool
is oscillated by a fast tool servo at the desired frequency and
amplitude. The methods used in the recent studies [1, 11, 12]
are based on the stability limits obtained from chatter tests and
do not require as complicated measurement systems as used in
many other studies. The average process damping coefficient
is identified from the difference between the stability limits
determined at low and high speeds, then an energy balance
relation is established to relate the flank–wave contact area to
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the process damping, where an indentation force coefficient is
identified.

Modeling and simulation of cutting forces in machin-
ing are often required in monitoring, planning, optimi-
zation, and control of machining processes as well as in
fixture design and servomechanism design. Knowledge
of the cutting forces in high-speed machining is an
important criterion to determine the machinability of a
workpiece material. Information on cutting forces is
significant because it denotes information involving the
cutting process, workpiece material, cutters, fixturing
elements, and machine tool itself. Thus, it provides a
key basis to constitute to the basic understanding of the
kinematics and dynamics of machine tools and machin-
ing processes. They can also be used to optimize cutter
geometry and assess the likelihood of workpiece distor-
tion. In particular, cutting forces have always been used
as a process parameter to correlate to the significance of
tool wear. Here, static force magnitude is interpreted as
an average value within a specified time domain of the
sampled data to establish cutting force magnitude. On
the other hand, the dynamic force is associated with the
oscillation between an ambient value at the beginning of
a cut and reaches to a maximum at the end of the cut
[13–17]. However, the magnitude of the process
damping ratio (PDR) and its effects on stability has
not been studied. In these studies, the modeling of the
cutting system was performed due to the fact that cut-
ting tool is constituted as a result of penetration to the
rough surface of the workpiece. Penetration force and
variations of cutting force that occur from penetration
into a wavy workpiece surface of the tool have been
studied. The variable cutting force which occurs due to
variation in shear angle (φ ) has also been studied. The
comprehensive modeling of the dynamic cutting forces
and its effects on the chatter vibration has been studied,
where dynamic cutting coefficients were obtained [1,
12, 18].

In this paper, a dynamic cutting system with two
degrees of freedom (TDOF) is modeled prior to the
orthogonal cutting, which in general forms a mechanical
cutting basis for all cutting processes. This dynamic
system is used for turning. This cutting process was
modeled according to τ -decomposition form, and then,
the stability of this system was investigated by applying
the τ -decomposition form to Nyquist criteria [1, 12, 18,
19]. Dynamic force equations of the dynamic cutting
system were expressed as linear and nonlinear differen-
tial equations. The solutions of the dynamic force equa-
tions were performed by Runge–Kutta method [20]. To
investigate the effect of cutting conditions on the pro-
cess damping using this new method, a series of turning
experiments were carried out for AISI-1040, Al-7075,

and Al-6061 work materials, at a constant spindle speed
and tool length. To investigate the effect of cutting condi-
tions on the process damping,variation of the PDR for
different work materials has simply been obtained by line-
arizing the nonlinear differential equations.

2 Modeling of the dynamic cutting system

Machine chatter prediction and stability analysis are
conducted for a turning process with TDOF. Since the dynam-
ic cutting operations are complicated, the turning system
which is investigated in this study was simplified by modeling
mass-spring-damper, as shown in Fig. 1.

The equations of motion of the cutting system in the feed
(x ) and tangential (y ) directions were formed as follows:

mx x
⋅⋅
tð Þ þ cx ẋ tð Þ þ kx x tð Þ ¼ F tð Þ sin βn

my y
⋅⋅
tð Þ þ cy ẏ tð Þ þ ky y tð Þ ¼ F tð Þ cos βn

ð1Þ

Where,

F tð Þ ¼ aK f h tð Þ ð2Þ

h tð Þ ¼ h0�x tð Þþx t−τð Þ ð3Þ
The terms in Eqs. (1–3) are as follows: a is the axial depth of
cut (meter), mx and my are the equivalent mass coefficients
(kilogram), cx and cy are the structural damping coefficients
(kilogram per second), kx and ky are the stiffness coefficients
(newton per meter), k f is the specific cutting energy of the

Fig. 1 Dynamic cutting model with TDOF
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material (newton per square meter), h (t ) and h0 are dynamic
and nominal chip thicknesses (meter), respectively, and x (t )
and x (t −τ ) are modulations of the inner and outer work
surface (meter), respectively. The terms used in Fig. 1 are as
follows:α is tool rake angle, βn is the angle between dynamic
resultant cutting force (F ) and y axis, γ is the tool clearance
angle, ε is phase delay between inner and outer modulation on
the workpiece, and τ is phase delay between present time and
one spindle revolution period before (second). Time delay
magnitude is not constant due to the motion of cutting tool
in y direction for TDOF as can be seen from Fig. 1. As it is
much easier to deal with constant delay terms, the equations of
motions were converted in terms of arc length “q ,” defined
as follows:

q ¼ V t þ y ð4Þ
where V is constant linear velocity of the cutting tool
relative to the workpiece (meter per second), y is dis-
placement in y direction of the tool according to workpiece
(meter), and q is the chip arc length for one period of the
rotating workpiece.

3 Linear modeling of the cutting forces

One of the most important sources of instability is the
so-called regenerative effect, in which cutting forces are

the functions of tool–workpiece relative position at in-
stant of machining, and phase delay (τ ). The magnitude
of delay is usually equal to the time of the revolution of the
workpiece (or tool), in the case of a tool with single cutting
edge or to a time fraction of this period for a tool with several
cutting edges uniformly distributed. The problems of dy-
namic analysis for such systems have been thoroughly
studied. At present, the dynamics of multiple cutter tools
with irregularly distributed cutting edges has not yet been
completely analyzed. The difficulty arises due to the presence
of two or more delays, considerably complicating the problem
[21]. For the TDOF model, the magnitude of the time delay τ
is not constant due to (y ) direction displacement. Because
constant delay terms are much easier to deal with, the equa-
tions of motions are converted to a form in terms of chip arc
length, q , defined as Eq. (4). When the derivative of Eq. (4) is
taken as time related,

dq

dt
¼ qt ¼ V þ ẏð Þ≈V

Here, the displacement velocity of tool in y direction ẏð Þ is
neglected because it is much lesser than the linear velocity of
workpiece (V). So, ẋ , x⋅⋅ , ẏ , and y⋅⋅ terms in Eq. (1) could be
written as follows, respectively:

dx

dt
¼ dq

dt

dx

dq
¼ V þ ẏð Þxq ⇒

dx

dt
≈ V xq

d2x

dt2
¼ d

dt

dx

dt

� �
¼ d

dt
V þ ẏð Þxq

� � ¼ V þ ẏð Þxqq qt þ ÿ xq ⇒
d2x

dt2
≈ V 2 xqq

Similarly, it can also be written in y direction:

dy

dt
≈ V yq

d2y

dt2
≈ V 2 yqq

If instantaneous dynamic chip thickness (h (t )) is
expressed in the terms of chip arc length h (q ), then
the equations of motion in (x ) and (y ) directions can be
written as:

mx V
2 xqq þ cx V xq þ kx x ¼ −Fx h qð Þ

my V
2 yqq þ cy V yq þ ky y ¼ −Fy h qð Þ ð5Þ

Where,

h qð Þ¼x qð Þ−x q−πdð Þ Fx ¼ K f a sinβn Fy ¼ K f a cosβn

Here, terms xq and yq indicate derivatives with respect to arc
length rather than time. The delay term is now the constant
length (πd ) rather than the varying length of time. If both sides
of Eq. (5) are reduced for simplification,

ecx ¼ cx
mx V

ekx¼ kx
mx V 2 eFx ¼

−Fx

mx V 2

ecy ¼ cy
my V

eky ¼ ky
my V 2 eFy ¼

−Fy

my V 2

xqqþcex xqþ ekx x ¼ eFx x qð Þ−x q−πdð Þð Þ

yqqþ ecy yqþeky y ¼ eFy x qð Þ−x q−πdð Þð Þ

ð6Þ

Equation (6) can be written in a matrix form as follows:

1 0
0 1

� �
xqq
yqq

� 	
þ ecx 0

0 ecy
� �

xq
yq

� 	
þ ekx − eFx0

− eFy eky
2
4

3
5 x

y

� 	

þ eFx
0eFy

0
� �

x q−πdð Þ
y q−πdð Þ

� 	
¼ 0

0

� 	 ð7Þ
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Taking the Laplace transform and determinant to find the
characteristic equation yields,

D sð Þ ¼ s4 þ ecx þecy
 �
s3 þ ekx � −eFx þecxecy þ eky
 �

sþ ekx � −eFx


 �ecy þ ecxeky
 �
sþ ekx−eFx


 �eky
þ s2 þecysþeky� 
 eFxe

�−dππs ¼ 0

To investigate the stability of the system, the characteristic
equation can be arranged as follows:

a4 ¼ 1
�
eFx

a3 ¼
ecxþecy
 �,

eFx

a2 ¼
ekx−eFx


 �
þecx ecyþeky
 �,

eFx

a1 ¼
ekx−eFx


 �ecyþecx eky
 �,
eFx

a0 ¼
ekx−eFx


 �eky
 �,
eFx

D sð Þ
.eFx ¼ a4s

4 þ a3s
3 þ a2s

2 þ a1sþ a0

þ s2 þ ecysþ eky
 �
e−dπs ¼ 0 ð9Þ

Putting D(s ) equal to 0, this becomes:

edπs ¼
− s2 þecysþ eky
 �

a4s4 þ a3s3 þ a2s2 þ a1sþ a0
ð10Þ

If Eq. (10) is separated into two parts, it can be written in the
form below:

U 1 sð Þ ¼ edπs U 2 sð Þ ¼
− s2 þ ecysþ eky
 �

a4s4 þ a3s3 þ a2s2 þ a1sþ a0

According to the Nyquist criteria, the right side of this equa-
tion expresses Nyquist plane curve U2(s ), while the left side
expresses the critical orbitU1(s ). If s =jω , then the roots of the
characteristic Eq. (10) can be obtained by equalizing the
magnitude of the right side of Eq. (1):

eky−ω2

 �

þ jecyω��� ���
a4ω4−a2ω2 þ a0ð Þ þ j a1ω−a3ω3ð Þ

��� ��� ¼ 1

a4ω
4−a2ω2 þ a0

� 
2 þ a1ω−a3ω3
� 
2 ¼ eky−ω2


 �2
þ ecy2ω2

The characteristic equation yields:

a24ω
8 þ a23−2a4a2

� 

ω6 þ a22 þ 2a4a0−2a3a1−1

� 

ω4

þ a21−ecy2−2a2a0 þ 2eky
 �
ω2 þ a20 − eky2 ¼ 0

ð11Þ

Hence, the positive real root of this equation gives the chatter
frequency of the system.

4 Nonlinear modeling of the cutting forces
(process damping)

When long shafts are turned in manufacturing, the ma-
chine tool is often configured such that the workpiece
does not rotate, but is fed at an axial velocity, V, to
rotating cutters. It is observed that such a configuration
yields a more accurately machined workpiece surface
due to decreased lateral shaft vibrations. The variation
in the cutting force is caused by the variation in the
effective chip thickness or the rate of penetration of the
tool. As a consequence, the cutting force depends upon
the actual and delayed values of the relative displace-
ment of the tool and the workpiece, where the length of
the delay is equal to the time period of the revolution
of the workpiece. Only the change in the cutting force
needs to be considered since the constant force can be
eliminated by the proper choice of the coordinate origin.
To this end, consider the delay differential equation for
a dynamic cutting model [22]. To further explore the
nature of the TDOF cutting model, a numerical simula-
tion of the process was developed. The simulation is able
to predict the time domain response of the system described
by Eqs. (1), (2), and (3) without the need for the simplifica-
tions and modifications introduced to obtain an analytical
solution. This is the system demonstrated in Fig. 1. In this
regard, if ẏ is not neglected in Eq. (4), Eq. (5) can be written
as follows:

mx xqq q
2
t þ y

⋅⋅
xq

h i
þ cx xq qt þ kx x ¼ −Fx h qð Þ

my yqq q
2
t þ y

⋅⋅
yq

h i
þ cy yq qt þ ky y ¼ −Fy h qð Þ

ð12Þ

(8)
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Similarly, both sides of Eq. (12) are reduced for simplification:

ec1x ¼ cx
mx qt

ek1x ¼ kx
mx q2t

eF1x ¼ −Fx

mx q2t

ec1y ¼ cy
my qt

ek1y ¼ ky
my q2t

eF1y ¼ −Fy

my q2t

and by taking into account μ ¼ y⋅⋅

q2t
, Eq. (6) can be written as:

xqq þ μþ ec1x
 �
xq þ ek1x x ¼ eF1x x qð Þ−x q−πdð Þð Þ

yqq þ μþ ec1y
 �
yq þ ek1y y ¼ eF1y x qð Þ−x q−πdð Þð Þ

ð13Þ

Hence, Eq. (13) can be written in matrix form as:

1 0
0 1

� �
xqq
yqq

� 	
þ μþ ec1x 0

0μþ ec1y
� �

xq
yq

� 	
þ ek1x −eF1x0

−eF1yek1y
" #

x
y

� 	

þ eF1x
0eF1y 0

" #
x q−πdð Þ
y q−πdð Þ

� 	
¼ 0

0

� 	

ð14Þ
The characteristic equation of the TDOF system can be

written the same as Eq. (8). Total damping coefficients (cx and
cy) of the cutting system in the x and y directions are increased
by μ as shown in Eq. (13). Also, μ was obtained by penetration
of the tool into the wavy workpiece surface as shown in Fig. 2.

Penetration of the tool occurs during semi-period of the
tool oscillation as shown in Fig. 2, where μ is process
damping coefficient of the cutting system. Calculation of the

μ is performed numerically. In this study, an adaptive Runge–
Kutta method was used for numerical integration scheme.
Runge–Kutta methods compute the state of a system, in this
case the velocity and displacement of the cutting tool, at a
series of discrete time steps. The numerical program computes
the next state using a fourth-order integration technique. As
can be seen from Fig. 2, the cutting tool position from A to C
is a half of the vibration period of the tool. Penetration of the
cutting tool into the workpiece wave surface is from A to B
and the γ angle decreases, than cutting tool exit from immer-
sion between the positions of B and C, and the γ angle
increases up to the D position [2]. According to these expla-
nations, the value of cx and cy increases from A to B and
decreases symmetrically from B to C. Thus, the investigation
of tool motion only from A to B is enough. As seen in Fig. 2,
penetration of the cutting tool into the workpiece wave surface
is maximum and cutting tool moves downward in y direction.
Thus, linear cutting speed Vc of the tool in this region will be
in minimum values.

Vc ¼ qt ¼ V−ẏ ð15Þ

When the tool is on the location B, the linear cutting speed will
be as below:

Vc ≅ qt ≅ V ð16Þ

For a stable cutting, d
2y
dt2 ¼ q2t yqq þ y⋅⋅ yq ¼ 0 .

Where,

yq¼ dy
dq and yqq ¼ d2y

dq2 ¼ d dyð Þ
dq2 ¼ d

dq
dy
dq

ẏ ¼ dy

dt
¼ ωcdr ⇒ dr ¼ dy

dt

1

ωc

qt ¼
dq

dt
¼ d 2πrð Þ

dt
¼ 2π

dr

dt
¼ 2π

ωc

dy

dt

Finally, the acceleration equation above can be written as:

q2t
d

dq

dy

dq
þ y

⋅⋅ dy

dq
¼ 0

Fig. 2 Penetration model of cutting tool

Table 1 Test device properties
Device Range Sensitivity Power Other

Impact hammer 0–500 N 10 mV/N 20–30±5 V 27.0 kHz

Accelerometer −5…. +5 g 104.3 mV/g 5 V 40.0 kHz

NI-DAQ card 16 input/2 output 500 kS/s 5 V 12 bit

Microphone 40–18,000 Hz 11–52 V
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After solving both sides of the above equation:

qt
d

dt
þ y

⋅⋅ ¼ qt f c þ y
⋅⋅ ¼ 2π f c

dr

dt
þ y

⋅⋅ ¼ 0

Hence,

f 2c ẏ þ y
⋅⋅ ¼ 0 ð17Þ

For numerical solution of linear differential equation,
the boundary conditions are 0≤ t ≤Tc and the starting

conditions for B location were y (0)=Ay and dy
dt 0ð Þ ¼ 0 .

where Ay, Tc , and f c are chatter amplitude, period, and
chatter frequency (hertz) in the y direction of the tool,
respectively.

Fig. 3 Experimental setup for impact hammer test

Fig. 4 Sample result of
microphone test
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5 Stability analysis

To understand the chatter phenomenon completely, we must
resort to the nonlinear aspects as it has been shown that chatter
is an essentially nonlinear phenomenon. According to the
nonlinear theory of chatter, some typical chatter phenomena,
such as finite amplitude chatter and bifurcations, can explain

which the linear theory cannot explain. According to the linear
theory of chatter, there are distinct stability boundaries in the
process parameter space. The stability behavior undergoes an
abrupt change from stable to unstable, which is not the real
case for the nonlinear situation [22]. There have been many
theoretical investigations regarding stable and unstable oper-
ating ranges for various cutting conditions. These works

Fig. 5 Experimental setup for microphone test

Fig. 6 a Real and b imaginer
graphics obtained from modal
analysis of the TDOF system
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typically rely on constructing models and varying one param-
eter (cutting speed, width of cut, etc.) at a time in order to
generate stability lobe diagrams showing regions of stable and
unstable cutting. The simplest models model the tool as a
single degree of freedom under damped linear oscillator ex-
cited by the variation in undeformed chip thickness from one
revolution to another. More complicated models introduce
nonlinear damping and stiffness in order to explain the bound-
ed nature of the oscillations in chatter. However, it has been
shown that the nonlinear relationship between the cutting
force and the uncut chip thickness has a stronger effect on
the global dynamics than the nonlinearity of the structural
stiffness and damping. Experimental efforts in chatter often
are conducted to validate the aforementioned analytically
derived stability limits. There are also cases where data-
driven techniques are used to predict the onset of chatter or
active control is used to eliminate it. The simplest approaches
to chatter detection rely on heuristically determining a magni-
tude threshold value (usually in the frequency domain). This is
a logical approach since the most obvious manifestation of

chatter is larger amplitude dynamics. This has been
done with measuring tool displacement, force, accelera-
tion, or acoustic emission. More robust chatter detection
algorithms look at the organization or entropy of cutting
signals as opposed to the magnitude because it has been
noted that chatter results in a transition from more
stochastic higher dimension dynamics to more determin-
istic lower dimension dynamics [23, 24].

In this study, we considered the orthogonal cutting
which is probably the most chatter-prone cutting mech-
anism there is. Hence, the roots of Eq. (11) must now
be obtained for stability analysis of the cutting system.
The number of roots found will be twice the number
that is actually present in the system. As a result, only the
positive real roots of the equation need to be examined. Each
positive real root (ω i) is substituted back into the equation
U2(s ) to find U2(jω i). Hence, Nyquist curve is drawn. The
curve of Eq. U 1(s ) is a critical orbital curve (unit
circle). According to the Nyquist criteria, the right side
of Eq. (11) expresses Nyquist curve U 2(s ) and the left

Fig. 7 Transfer function of a TDOF system represented by its (a) real and (b) imaginary parts

Fig. 8 The variation of a cutting speed and b damping constants
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side expresses critical orbit U 1(s ). With the help of the
real and imaginer parts of the equation U 2(jω i), the
phase angle is found.

ψi ¼ tan−1
Im U2 jωið Þð Þ
Re U2 jωið Þð Þ ð18Þ

Delay value is found as in the following:

τ i ¼ ψi þ 2πk
ωi

k ¼ 0; 1; 2; 3 ð19Þ

Similarly, the ratio of imaginer (H ) to real (G) parts of the
characteristic function, these parts obtained from oriented
transfer function of turning system with the TDOF, gives
phase shift of the structure's transfer function.

ψ ¼ tan−1
H

G
ð20Þ

The corresponding spindle period and maximum spindle
speed are found as:

τ ¼ εþ 2πk
ωc

k ¼ 0; 1; 2; 3 ð21Þ

N ¼ 60
�
τ ð22Þ

where ω c is chatter frequency of cutting tool (radian per
second); k is number of full waves formed on the cutting
surface; and ε is phase shift between the inner and outer

waves, calculated as ε =3π +2ψ . The corresponding critical
axial depth of cut for each spindle speed

alim ¼ −1
2K f G ωð Þ ð23Þ

is calculated [1].

6 Empirical study and numerical simulations

In the current study, AISI-1040, Al-7075, and Al-6061 mate-
rials have been used as a workpiece material whose diameters
are 65 mm. As a cutting condition of the turning process, the
spindle speed (N) is 1,000 rpm, feed rate (h0) is 0.12 mm/rev,
and the rake angle (α ) is 6°. The workpiece is cut by
Kennametal (SDJR-2525M11 NA3) inserts on universal lathe
TOS SN50C. Tool holder dimensions are 25×25×135 mm
(b ×h ×l) and tool length is L=70 mm. According to these
data, the cutting force angle (βn) was calculated from orthog-
onal mechanics (Turkes et al. 2011a) as 20°.Modal analysis of
the turning system was performed by the impact hammer test.
Some important properties of hammer test devices and exper-
imental setup were given in Table 1 and Fig. 3, respectively.

After that, the modal parameters were determined by using
CutPro_MalTF software and CutPro_Modal software.
According to these analyses, the damping ratios, stiffness
coefficients, and natural frequencies in x and y directions,
respectively, are obtained as ζx=1.34 % , ζy=2.00 % , kx=
1.6×106 N/m, k y=2.4×10

6 N/m, f nx=200 Hz, and f ny=
310 Hz. These results were obtained during the cutting oper-
ation under the cutting conditions, which were mentioned
above, by using a microphone connected to PC and processed
by LabVIEW 7 software that is loaded into the same comput-
er. The chatter frequencies in dynamic cutting are obtained by
microphone tests (see Fig. 4). Test device properties used in

Table 2 Orthogonal cutting parameters for work materials

Material fc (Hz) A (μm) ζ (%) a lim (mm) Kf (N/m
2)x109

AISI-1040 289 8.5 0.025 1.5 1.67

Al-7075 263 2.9 0.013 3.5 0.7

Al-6061 297 2.5 0.011 4.3 0.72

fc chatter frequency, A amplitude, ζ process damping ratio, a lim stable
axial cutting depth, Kf cutting force coefficient

Fig. 9 The variation of a Nyquist
and b stability lobe diagram

Int J Adv Manuf Technol



the cutting tests and dynamic cutting test setup are given as
Table 1 and Fig. 5, respectively.

Real and imaginer graphics of the TDOF turning system
which were obtained from the modal analysis test for exem-
plarily AISI-1040 have been shown in Fig. 6a, b. Also, the real
and imaginer parts of the simulated transfer function of the
cutting system for comparison with experimental results are
given in Fig. 7a, b. Thus, the frequency corresponding to the
minimum negative real part of the transfer function can be
predicted as chatter frequency. This value, according to the
form calculated here, was predicted to be 289 Hz. Prediction
chatter frequency in both calculation forms is explained in this
study, and as expected, it is greater than the natural frequency
that was found as a result of the modal analysis of the system.

As mentioned earlier, due to the tool vibration in the x and
y directions, the tool displaced during the cutting. As seen in
Eq. (13), the damping constants of the system with TDOF
change according to tool position in the y direction which
varies in accordance with ẏ and y⋅⋅ . In addition, due to ẏ
between the tool and workpiece, the relative cutting speed Vc

was varied. Thus, the variations of cx and cy have been found
by linearized solving of the nonlinear equations of ẏ and y⋅⋅

during cutting in a tool period which vibration amplitude and
frequency of tool were measured, where the variation of Vc

during a vibration period has been shown in Fig. 8a.
According to Fig. 2, when tool is on the point A, Vc receives
the minimum value; when the tool tip is on the point B, it
becomes Vc=V; and when the tool is on the point C, Vc

receives the maximum value. The chatter frequency, amplitude,
process damping ratio, maximum stable axial depth, and spe-
cific cutting energy values of the material for AISI-1040, Al-
7075, and Al-6061 were given in Table 2. Also, process
damping values for different spindle speed range and work
materials were given by Neşeli [18].

According to Fig. 1, point B is on the nominal depth
of cut axis which is initially equal to tool feed rate. As
mentioned earlier, c x and c y increase between A and B
points and symmetrically reduce between B and C
points. c x and c y variations between these points have
been shown in Fig. 8.

Fig. 10 The tool displacement. a Undamped. b Damped

Fig. 11 The variation of cutting force. a Undamped. b Damped
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For a linearized numerical solution of Eq. (13) determined as
0≤t ≤Tc for Eq. (23) as a boundary condition, distances were
divided into 200 equal parts. As shown in Fig. 8a, b, for cx and
cy variation, consideration between A and B range will be
enough. This range is divided into ten equal parts and the
corresponding cx and cy values substituted in the modeling
procedure described above, U1(ω i) Nyquist unit circle, and
U2(ω i) Nyquist place curve were plotted as can be seen in
Fig. 9a. Here, the damping constants (ςx;y ¼ cx;y=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx;y mx;y

p
)

expressed in terms of damping ratio, the situations of 0, 2, 5,
and 10, respectively, are plotted as U2(ω i) curves. Using
procedure between Eqs. (18) and (23), the stability lobe dia-
gram was plotted in Fig. 9b for TDOF turning system.
Undamped stability lobe diagram is shown with a dashed line,
which is observed from the linear modeling. A continuously
drawn thicker line is obtained according to variation range of
the ς x and ς y, which is obtained from the solution of the
linearized nonlinear model. Here, a higher stability is observed
in the low cutting speed.

In this study, time domain simulation of TDOF sys-
tem has been performed; therefore, how the changes
affect tool displacement or chatter amplitude, X
(micrometer), and resultant cutting force, F (newton),
from damping ratio are examined. In the simulation, the
one step time is selected as 1×10−4 and the total time
step quantity is divided into 5,000 equal pieces and the
period of workpiece is divided into 200 equal pieces. The
limit axial depth of cut (a lim) was calculated by Eq. (23).
According to these data, the tool displacements plotted with
damped and undamped were shown in Fig. 10a, b. Figure 10a
represents a clearly unstable case, where the amplitude of the
vibrations is much larger. Figure 10b shows the simulated
amplitude of vibrations with the effect of process damping.
It can be seen that process damping in turning has a more
significant effect.

The variation of the resultant cutting force can also
be seen in Fig. 11a, b. For damped and undamped situa-
tions, in these figures, the values of cx and cy are status values
on the ς0 and ς10.

7 Conclusion

The present contribution aims to shed light on the phenome-
non of process damping when machine turning. This will be
achieved using a novel solution methodology, which has been
presented, that relies on a frequency domain solution. The
motion equations of the cutting forces in the x and y for this
turning system have been written as linear and nonlinear. The
relevant nonlinearity is considered only on the cutting force
variation in motion of the tool in the y direction and the spring
nonlinearity is not considered. For this purpose, firstly, the
motion equation of the system was discussed in the τ -

decomposition form. Considering the motion of the tool in
the y direction during cutting, the motion equations are ar-
ranged, and thus, the characteristic equation of the system is
obtained. Accordingly, the damping constants change
depending on ẏ and y⋅⋅ in the x and y directions. Variation
of the PDR for the different work materials has been simply
obtained by linearized numeric solution of the nonlinear dif-
ferential equations. If the variation of cx and cy values substi-
tutes into the characteristic equation, how process damping
changes according to Nyquist criteria were shown within
Nyquist curves and stability lobe diagrams. Lastly, process
damping variation was solved by time domain simulation and
its effect upon tool displacement or chatter amplitude, X
(micrometer), and the resultant cutting force, F (newton),
was investigated. In the present study, finally, with the model-
ing, a new simple approach is tried to research on the effects of
process damping and how it varies. This approach allows a
new interpretation on the stabilization mechanisms behind the
model and is more amenable to solution when using experi-
mentally obtained frequency response measurements of the
structure.
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