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Abstract. In this study, firstly, we generalize Berwald map by introducing the concept of a
Riemannian map. After that we find Berwald eikonal equation through using the Berwald map.
The eikonal equation of geometrical optic that examining light reflects, refracts at smooth, plane
interfaces is obtained for Berwald condition.

1. Introduction
Finsler manifolds can be thought as generalization of Riemannian manifolds; tangent spaces
carry Minkowski norms instead of inner products and geometric objects on tangent vectors
depend not only on the base but also on the fibre component. Finsler manifold have an intrinsic
geometrical significance and also they have been used to model a variety of problems from
dynamics, optics and relativity, cf. eg. [4] and [8].

One of the relevant figures working on that period on Finsler geometry was L. Berwald, who
introduced a connection and a class of spaces sharing his name [7]. Especially, positive definite
Berwald manifolds constitute the conceptually simplest and the best understood class of Finsler
manifolds.

The eikonal equation is frequently solved using characteristic. This involves solving the ray
equations in a combined coordinate and ray parameter phase space and then integrating the
traveltime along these rays [10]. Physically rays are the trajectories along which high-frequency
energy flows. A number of efficient methods for solving the ray equations have been developed
[3]. Using the method of characteristics, traveltimes were computed along rays and approximate
solutions of the eikonal equation could also obtained by R. L. Nowack [9].
∇f is used many areas of science such as mathematical physics and geometry. For example,

the Riemannian condition ‖∇f‖2 = 1 is precisely the eikonal equation of geometrical optics. In
the geometrical optical interpretation, the level sets of f are interpreted as wave fronts. The
characteristics of the eikonal equation are then the solutions of the gradient flow equation for f,

x′ = grad f(x) (1)

which are geodesics of M orthogonal to the level sets of f , and which are parametrized by arc
length. These geodesics can be interpreted as light rays orthogonal to the wave fronts [1].

The concept of a Riemannian map was introduced by Fischer and it is shown that these maps
are solutions of the eikonal equation [1]. The notion of semi-Riemannian map was stated, using
the map, the solution of the eikonal equation was obtained by Garcio et al [5].
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In this paper, we generalize these maps to Berwald manifolds by introducing the concept of
a Riemannian map. We find Berwald eikonal equation though using the Berwald map.

2. Preliminaries
Let M be a connected, n−dimensional, C∞ manifold and TM= ∪x∈M TxM be the tangent
bundle of M , where TxM is the tangent space at x ∈M. We denote a typical point in TM
by (x, y). Set TM0 = TM \ {0}, where {0} stands for {(x, 0) : x ∈ X, 0 ∈ TxM}. A Finsler
metric on M is a function F : V → [0, ∞) with the following properties:

i) F is C∞ on TM0.
ii) At each point x ∈M, the restriction Fx : F |TxM is a Minkowski norm on TxM. So the

pair (M, F ) is called a Finsler manifold [11].
A Finsler metric F on a manifold M is called Berwald metric if in a standard local coordinate

system (xi, yi) in TM0, the Christoffel symbols Γijk = Γijk(x) are functions of x ∈M only,

in which case, Gi =
1

2
Γijk(x)yjyk are quadratics in y = yi

∂

∂xi
|x . Riemannian metrics and

Minkowski metrics are trivial Berwald metrics.
The Legendre transformation l : TM → T ∗M is defined as

l(Y ) =

{
gY (Y, ·), Y 6= 0
0, Y = 0,

where g is the symmetric bilinear form.
Let f = M → R be a smooth function on M. The gradient of f is defined

as ∇f = l−1(df), where l−1 : T ∗M → TM is the inverse Legendre transformation. Thus we
have

df(X) = g∇f (∇f, X), X ∈ TM. (2)

[2].
Let M and M ′ be a Finsler manifolds with metric functions F (x, y) and F ′(x′,

y′). A differentiable map f : M →M ′ is local isometry if each of the tangent maps

f∗ : TxM → Tf(x)M
′ is a vector space isomorphism which preserves the metric. A local

isometry is an isometry if it is one to one and onto [6].
Let (M, F ) be a Berwald space. Given any parallel vector field V along a curve σ in M. We

can express the Finslerian norm of V as

F (V ) =
√
gV (V, V ) (3)

where gV = gij(σ,V )dx
idxj [4].

Let f : (M, gM )→ (N, gN ) be a smooth map between smooth finite dimensional Rieman-
nian manifolds (M, gM ) and (N, gN ). Let

f∗ : Vx ⊕Hx → rangef∗ ⊕ range(f∗)⊥

denote the tangent map at x ∈M. Here Vx = ker f∗ ⊆ TxM denotes the vertical subspace

of TxM and Hx = ker(f∗)
⊥ ⊆ TxM denotes the horizontal subspace of TxM. If the horizontal

restriction (f∗)
h : Hx → rangef∗ is a linear isometry between the inner product spaces (Hx,

gM (x) |Hx) and (rangef∗, gN (y) |rangef∗), y = f(x). The map is a Riemannian map if f is
Riemannian at each x ∈M [1].

Theorem 2.1. Let f : (M, gM )→ (N, gN ) be a smooth map between smooth finite di-
mensional Riemannian manifolds (M, gM ) and (N, gN ), such that M is a connected manifold.
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Then rankf is constant on M and the norm squared ‖f∗‖2 of f∗ satisfies

‖f∗‖2 = rankf.

If in the above theorem (N, gN ) = (R, 1) = R is the real line with its Euclidean metric, and
if f : (M, gM )→ R is a real valued Riemannian map, then rankf is constant on M equal
to either zero or one. If rankf = 0, then f is a constant map, and if rankf = 1, then f
satisfies the eikonal equation

‖f∗‖2 = 1

of geometrical optics [1].

3. Berwald map and Berwald eikonal equation
Let M1 and M2 be differentiable, connected manifolds of dimensionals n1 and n2, respectively.
Let f : (M1, F1)→ (M2, F2) be a map, where F1 and F2 are Berwald metrics. Let
f∗ : TxTM1 → TyTM2 denotes the tangent map at x ∈M1, y = f(x) ∈M2. Then TxTM1

and TyTM2 split orthogonally as

TxTM1 = VxTM1 ⊕HxTM1

and
TyTM2 = rangef∗ ⊕ range(f∗)⊥.

Here
VxTM1 = ker f∗ ⊆ TxTM1

denotes the vertical subspace of TxTM1 and

HxTM1 = ker(f∗)
⊥ ⊆ TxTM1

denotes the horizontal subspace of TxTM1. Thus, we have

f∗ : VxTM1 ⊕HxTM1 → rangef∗ ⊕ range(f∗)⊥.

Using these expression, we can write the following definitions:
Definition 3.1. A smooth map f : (M1, F1)→ (M2, F2) between smooth finite dimen-

sional (M1, F1) and (M2, F2) is Berwald at x ∈M1 if the horizontal restriction

(f∗)
h : HxTM1 → rangef∗

is a linear isometry between (HxTM1, F1(x) |Hx) and
(rangef∗, F2(y) |rangef∗), y = f(x). The map is a Berwald map if f is Berwald at

each x ∈M1.
Definition 3.2. Let f : (M1, F1)→ (M2, F2) be a map. Then the square norm of f∗ is

the map ‖f∗‖2 : M1 → R+ defined by ‖f∗‖2 (p1) = ‖f∗p1‖
2 .

Note that, since ‖f∗‖2 =

n1∑
i=1

F 2
1 (Xi)F

2
2 (f∗(Xi)), where {X1, ..., Xn1} is an orthonormal

local frame of TTM1.
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Let us compute the square norm of a map f : (M, F )→ (R+, dt⊗ dt). For this, let
{X1, ..., Xn} be an orthonormal local frame. We have

‖f∗‖2 =

n∑
i=1

F 2(Xi)(dt⊗ dt)(f∗Xi, f∗Xi)

From here, using the expression (2), then we find

‖f∗‖2 =
n∑
i=1

F 2(Xi)(g∇f (∇f, Xi))
2(dt⊗ dt)

(
d

dt
◦ f, d

dt
◦ f

)
= g∇f (∇f, ∇f)

From the equation (3), we have ‖f∗‖2 = F 2(∇f). The generalized eikonal equations for

f : (M, F )→ (R+, dt⊗ dt) become ‖f∗‖ = F (∇f) = 1. This extension enables a fast
calculation of geodesic paths.

Remark 3.1. According to the Theorem 2.1, for Berwald, this case is a geometrical optical
condition which it describes light propagation in terms of rays.

Lemma 3.1. Let f : (M, F )→ (R+, dt⊗ dt) be a map. Then

∇(F 2(∇f)) = 2∇∇f∇f,

where ∇f and ∇(F 2(∇f)) denote the gradients of f and F 2(∇f) on Berwald manifolds.
Proof. If X ∈ ΓTM, then we have

g(∇(F 2(∇f)), X) = 2g∇f (∇X∇f, ∇f)

Since hf (X) = ∇X∇f, we find

g(∇(F 2(∇f)), X) = 2g∇f (∇∇f∇f, X).

Hence, this completes the proof.
Proposition 3.1. Let f : (M, F )→ (R+, dt⊗ dt) be a map. If f satisfies a Berwald

eikonal equation F 2(∇f) = 1, then ∇f is a geodesic vector field on (M, F ).

Proof. For Berwald eikonal equation, we have F 2(∇f) = 1. From Lemma 3.1., we find

∇(F 2(∇f)) = 2∇∇f∇f = 0. (4)

Therefore, ∇f is a geodesic vector field on (M, F ). Namely, integral curves of the gradient flow
of f are geodesics of the Berwald manifolds.

Proposition 3.2. Let f : (M, F )→ (R+, dt⊗ dt) be a map. Then
i) The rank of f is constant on M .
ii) F 2(∇f) is constant on M .
Proof. The rank of f is constant on M if and only if for every p ∈M either ∇f(p) = 0

or ∇f(p) 6= 0. Here, we will only notice that ∇f(p) 6= 0 for every p ∈M.
i) Let p, q ∈ M and γ : [a, b]→M be a curve with γ(a) = p, γ(b) = q. Since ∇f is a

parallel vector field on (M, F ), (∇f) ◦ γ is parallel vector field along γ. By the uniqueness of
parallel vector fields along a curve with respect to initial condition, ∇f(p) 6= 0⇔ ∇f(q) 6= 0.
Thus, we have ∇f(p) 6= 0 for every p ∈M.

ii) According to the expression (4), F 2(∇f) is constant on M.
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4. Conclusion
In this work, we introduce Berwald map and study to explain the eikonal equation of geometrical
optic for Berwald condition. In future work, we will consider affine solution of Berwald eikonal
equation. First of all, the physical implications of affine solution of Berwald eikonal equation
should be investigated. Last, an obvious next step would be to show how to use this theorem
where generalizations of Berwald metric are employed in order to construct the eikonal equation
in pseudo-Finsler space.
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