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This paper presents amethod for a free vibration analysis of a thin-walled beam of doubly asymmetric cross section filled with shear
sensitive material. In the study, first of all, a dynamic transfer matrix method was obtained for planar shear flexure and torsional
motion.Then, uncoupled angular frequencies were obtained by using dynamic element transfer matrices and boundary conditions.
Coupled frequencies were obtained by the well-known two-dimensional approaches. At the end of the study, a sample taken from
the literature was solved, and the results were evaluated in order to test the convenience of the method.

1. Introduction

In the last two decades research on the dynamics of beams
has grown enormously.There are numerous studies [1–29] on
the bending-torsion coupled beam. In the beams, the elastic
center and the center of mass are not coincident, so the trans-
lational and torsionalmodes are inherently coupled as a result
of this offset. Rafezy and Howson [24] proposed an exact
dynamic stiffnessmatrix approach for the three-dimensional,
bimaterial beam of doubly asymmetric cross-section. The
beam comprises a thin-walled outer layer that encloses and
works compositely with its shear sensitive core material.

A dynamic transfer matrix method for the free vibration
analysis of a thin-walled beam of doubly asymmetric cross-
section filledwith shear sensitivematerials is suggested in this
study. The following assumptions are made in this study: the
behaviour of the material is linear elastic, small displacement
theory is valid, and the dynamic coupling effect of structure
caused by the eccentricity between the center of shear rigidity
and the flexural rigidity center is ignored in analysis.

2. Analysis

2.1. Physical Model. Figure 1 shows a uniform, three dimen-
sional beam of length 𝐿. It has a doubly asymmetric
cross-section comprising a thin-walled outer layer that

encloses shear sensitive material [24]. The outer layer may
have the form of an open or closed section that is assumed
to provide warping and Saint-Venant rigidity, while the core
materials provide Saint-Venant and shear rigidity. These
assumptions lead to a model in which a typical cross-section
has independent centers of flexure, shear, and mass denoted
by 𝑂, 𝑆, and 𝐶, respectively [24]. For convenience, the origin
of the coordinate system is located at the centre of flexure. 𝑂
gives the result that the axis of elastic flexure coincides with
the 𝑧-axis of the member.The 𝑥- and 𝑦-axes are subsequently
aligned with the principle axes of the cross-section. The
locations of the points 𝑆 and 𝐶 in the coordinate system Oxy
are given by 𝑆(𝑥

𝑠
, 𝑦
𝑠
) and𝐶(𝑥

𝑐
, 𝑦
𝑐
), respectively.The resulting

elastic shear and mass axes then run parallel to the 𝑧-axis
through (𝑥

𝑠
, 𝑦
𝑠
) and (𝑥

𝑐
, 𝑦
𝑐
) respectively. When the elastic

axis of the beam does not coincide, the lateral and torsional
motion of the beam will always be coupled in one or more
planes [24].

2.2. Element Transfer Matrices for Planar Motion. The gov-
erning equations for 𝑖th element of uncoupled thin-walled
shear sensitive beam can be written as
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Figure 1: Typical thin-walled beam [24].
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are the flexural rigidity of the 𝑖th segment

in the 𝑥-𝑧 and 𝑦-𝑧 planes, respectively, and 𝐺
𝑡𝑖
𝐽
𝑡𝑖
and 𝐸𝐼

𝑤𝑖

are the Saint-Venant and warping torsion rigidity of the 𝑖th
segment about 𝑂, where 𝐼

𝑤
is the warping moment of inertia

or warping constant. 𝐺𝐴
𝑥𝑖
and 𝐺𝐴

𝑦𝑖
are the effective shear

rigidities of the core material of the 𝑖th segment in 𝑥 and 𝑦

directions, respectively, and𝐺𝐽
𝑜𝑖
is the Saint-Venant torsional

rigidity of the core material about 𝑂. 𝜌
𝑖
are the mass per unit

length of the 𝑖th segment, and 𝑟
𝑚
is the polar mass radius of

gyration of cross section [24].
If a sinusoidal variation of 𝑈, 𝑉, and 𝜓 with circular

frequency 𝜔 is assumed then
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where 𝑢
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, and 𝜃
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varying displacement.
Substituting (2) in (1) results are
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𝑦𝑖
𝑧
𝑖
) + (𝐺𝐴)

𝑦𝑖
𝑏
𝑦𝑖
sin (𝑏
𝑦𝑖
𝑧
𝑖
)] 𝑐
7

+ [−(𝐸𝐼)
𝑦𝑖
𝑏
3

𝑦𝑖
cos (𝑏

𝑦𝑖
𝑧
𝑖
)

−(𝐺𝐴)
𝑦𝑖
𝑏
𝑦𝑖
cos (𝑏

𝑦𝑖
𝑧
𝑖
)] 𝑐
8
,

(15)

𝑀
𝑡𝑖
(𝑧
𝑖
) = 𝐸𝐼

𝑤𝑖

𝑑
3

𝜃
𝑖
(𝑧
𝑖
)

𝑑𝑧
3

𝑖

− (𝐺𝐽)
𝑜𝑖

𝑑𝜃
𝑖
(𝑧
𝑖
)

𝑑𝑧
𝑖

= [𝐸𝐼
𝜃𝑖
𝑎
3

𝜃𝑖
sinh (𝑎

𝜃𝑖
𝑧
𝑖
) − (𝐺𝐽)

𝑜𝑖
𝑎
𝜃𝑖
sinh (𝑎

𝜃𝑖
𝑧
𝑖
)] 𝑐
9

+ [𝐸𝐼
𝑤𝑖
𝑎
3

𝜃𝑖
cosh (𝑎

𝜃𝑖
𝑧
𝑖
)

−(𝐺𝐽)
𝑖𝑜
𝑎
𝜃𝑖
cosh (𝑎

𝜃𝑖
𝑧
𝑖
)] 𝑐
10

+ [(𝐸𝐼)
𝑤𝑖
𝑏
3

𝜃𝑖
sin (𝑏
𝜃𝑖
𝑧
𝑖
) + (𝐺𝐽)

𝑜𝑖
𝑏
𝜃𝑖
sin (𝑏
𝜃𝑖
𝑧
𝑖
)] 𝑐
11

+ [−(𝐸𝐼)
𝑤𝑖
𝑏
3

𝜃𝑖
cos (𝑏
𝜃𝑖
𝑧
𝑖
)

−(𝐺𝐽)
𝑜𝑖
𝑏
𝑦𝑖
cos (𝑏
𝜃𝑖
𝑧
𝑖
)] 𝑐
12
.

(16)

The following equation shows thematrix form of (4), (8), (11),
and (14):

[
[
[

[

𝑢
𝑖
(𝑧
𝑖
)

𝑢
󸀠

𝑖
(𝑧
𝑖
)

𝑀
𝑥𝑖

(𝑧
𝑖
)

𝑉
𝑥𝑖

(𝑧
𝑖
)

]
]
]

]

= 𝐴
𝑥𝑖

(𝑧
𝑖
)

[
[
[

[

𝑐
1

𝑐
2

𝑐
3

𝑐
4

]
]
]

]

. (17)
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For the 𝑦 direction, the following shows the matrix form of
(5), (9), (12), and (15):

[
[
[

[

V
𝑖
(𝑧
𝑖
)

V󸀠
𝑖
(𝑧
𝑖
)

𝑀
𝑦𝑖

(𝑧
𝑖
)

𝑉
𝑦𝑖

(𝑧
𝑖
)

]
]
]

]

= 𝐴
𝑦𝑖

(𝑧
𝑖
)

[
[
[

[

𝑐
5

𝑐
6

𝑐
7

𝑐
8

]
]
]

]

. (18)

Similarly, torsional motion can be written:

[
[
[

[

𝜃
𝑖
(𝑧
𝑖
)

𝜃
󸀠

𝑖
(𝑧
𝑖
)

𝑀
𝑤𝑖

(𝑧
𝑖
)

𝑀
𝑡𝑖
(𝑧
𝑖
)

]
]
]

]

= 𝐴
𝜃𝑖
(𝑧
𝑖
)

[
[
[

[

𝑐
9

𝑐
10

𝑐
11

𝑐
12

]
]
]

]

. (19)

At the initial point of the 𝑖th element, (17), (18), and (19) can
be written as follows:

[
[
[

[

𝑢
𝑖
(0)

𝑢
󸀠

𝑖
(0)

𝑀
𝑥𝑖

(0)

𝑉
𝑥𝑖

(0)

]
]
]

]

= 𝐴
𝑥𝑖

(0)

[
[
[

[

𝑐
1

𝑐
2

𝑐
3

𝑐
4

]
]
]

]

, (20)

[
[
[

[

V
𝑖
(0)

V󸀠
𝑖
(0)

𝑀
𝑦𝑖

(0)

𝑉
𝑦𝑖

(0)

]
]
]

]

= 𝐴
𝑦𝑖

(0)

[
[
[

[

𝑐
5

𝑐
6

𝑐
7

𝑐
8

]
]
]

]

, (21)

[
[
[

[

𝜃
𝑖
(0)

𝜃
󸀠

𝑖
(0)

𝑀
𝑤𝑖

(0)

𝑀
𝑡𝑖
(0)

]
]
]

]

= 𝐴
𝜃𝑖
(0)

[
[
[

[

𝑐
9

𝑐
10

𝑐
11

𝑐
12

]
]
]

]

. (22)

When vector 𝑐 is solved from (20) and is substituted in (17),
the following is obtained:

[
[
[

[

𝑢
𝑖
(𝑧
𝑖
)

𝑢
󸀠

𝑖
(𝑧
𝑖
)

𝑀
𝑥𝑖

(𝑧
𝑖
)

𝑉
𝑥𝑖

(𝑧
𝑖
)

]
]
]

]

= 𝐴
𝑥𝑖

(𝑧
𝑖
) 𝐴
𝑥𝑖
(0)
−1

[
[
[

[

𝑢
𝑖
(0)

𝑢
󸀠

𝑖
(0)

𝑀
𝑥𝑖

(0)

𝑉
𝑥𝑖

(0)

]
]
]

]

. (23)

For 𝑧
𝑖
= 𝑙
𝑖
, (23) can be written as

[
[
[

[

𝑢
𝑖
(𝑙
𝑖
)

𝑢
󸀠

𝑖
(𝑙
𝑖
)

𝑀
𝑥𝑖

(𝑙
𝑖
)

𝑉
𝑥𝑖

(𝑙
𝑖
)

]
]
]

]

= 𝑇
𝑥𝑖

[
[
[

[

𝑢
𝑖
(0)

𝑢
󸀠

𝑖
(0)

𝑀
𝑥𝑖

(0)

𝑉
𝑥𝑖

(0)

]
]
]

]

, (24)

where 𝑇
𝑥𝑖
is the element dynamic transfer matrix of the 𝑖th

element.
For the 𝑦 direction, (23) and (24) can be written as

follows:

[
[
[

[

V
𝑖
(𝑧
𝑖
)

V󸀠
𝑖
(𝑧
𝑖
)

𝑀
𝑦𝑖

(𝑧
𝑖
)

𝑉
𝑦𝑖

(𝑧
𝑖
)

]
]
]

]

= 𝐴
𝑦𝑖

(𝑧
𝑖
) 𝐴
𝑦𝑖
(0)
−1

[
[
[

[

V
𝑖
(0)

V󸀠
𝑖
(0)

𝑀
𝑦𝑖

(0)

𝑉
𝑦𝑖

(0)

]
]
]

]

, (25)

[
[
[

[

V
𝑖
(𝑙
𝑖
)

V󸀠
𝑖
(𝑙
𝑖
)

𝑀
𝑦𝑖

(𝑙
𝑖
)

𝑉
𝑦𝑖

(𝑙
𝑖
)

]
]
]

]

= 𝑇
𝑦𝑖

[
[
[

[

V
𝑖
(0)

V󸀠
𝑖
(0)

𝑀
𝑦𝑖

(0)

𝑉
𝑦𝑖

(0)

]
]
]

]

. (26)

Similarly, rotation motion can be written in equations as
follows:

[
[
[

[

𝜃
𝑖
(𝑧
𝑖
)

𝜃
󸀠

𝑖
(𝑧
𝑖
)

𝑀
𝑤𝑖

(𝑧
𝑖
)

𝑀
𝑡𝑖
(𝑧
𝑖
)

]
]
]

]

= 𝐴
𝜃𝑖
(𝑧
𝑖
) 𝐴
𝜃𝑖
(0)
−1

[
[
[

[

𝜃
𝑖
(0)

𝜃
󸀠

𝑖
(0)

𝑀
𝑤𝑖

(0)

𝑀
𝑡𝑖
(0)

]
]
]

]

, (27)

[
[
[

[

𝜃
𝑖
(𝑙
𝑖
)

𝜃
󸀠

𝑖
(𝑙
𝑖
)

𝑀
𝑤𝑖

(𝑙
𝑖
)

𝑀
𝑡𝑖
(𝑙
𝑖
)

]
]
]

]

= 𝑇
𝜃𝑖

[
[
[

[

𝜃
𝑖
(0)

𝜃
󸀠

𝑖
(0)

𝑀
𝑤𝑖

(0)

𝑀
𝑡𝑖
(0)

]
]
]

]

. (28)

If (24) is written successively, the displacements—internal
forces relationship between the initial part and end of the
beam—can be found as follows:

[
[
[

[

𝑢end
𝑢
󸀠

end
𝑀
𝑥end

𝑉
𝑥end

]
]
]

]

= 𝑇
𝑥𝑛

𝑇
𝑥(𝑛−1)

⋅ ⋅ ⋅ 𝑇
𝑥2
𝑇
𝑥1

[
[
[

[

𝑢initial
𝑢
󸀠

initial
𝑀
𝑥initial

𝑉
𝑥initial

]
]
]

]

= 𝑡
𝑥

[
[
[

[

𝑢initial
𝑢
󸀠

initial
𝑀
𝑥initial

𝑉
𝑥initial

]
]
]

]

.

(29)

For 𝑦 and rotation motion, (29) can be written as follows:

[
[
[

[

Vend
V󸀠end

𝑀
𝑦end

𝑉
𝑦end

]
]
]

]

= 𝑇
𝑦𝑛

𝑇
𝑦(𝑛−1)

⋅ ⋅ ⋅ 𝑇
𝑦2
𝑇
𝑦1

[
[
[

[

Vinitial
V󸀠initial

𝑀
𝑦initial

𝑉
𝑦initial

]
]
]

]

= 𝑡
𝑦

[
[
[

[

Vinitial
V󸀠initial

𝑀
𝑦initial

𝑉
𝑦initial

]
]
]

]

,

[
[
[

[

𝜃end
𝜃
󸀠

end
𝑀
𝑤end

𝑀
𝑡end

]
]
]

]

= 𝑇
𝜃𝑛
𝑇
𝜃(𝑛−1)

⋅ ⋅ ⋅ 𝑇
𝜃2
𝑇
𝜃1

[
[
[

[

𝜃initial
𝜃
󸀠

initial
𝑀
𝑤initial

𝑀
𝑡initial

]
]
]

]

= 𝑡
𝜃

[
[
[

[

𝜃initial
𝜃
󸀠

initial
𝑀
𝑤initial

𝑀
𝑡initial

]
]
]

]

.

(30)

The eigenvalue equation for a thin-walled beam filled with
shear sensitive material can be established using (29), (30),
and the specific boundary conditions are as follows.

(1) Clamped-Free: 𝑓
𝑥

= 𝑡
𝑥
(3, 3)
∗

𝑡
𝑥
(4, 4) − 𝑡

𝑥
(3, 4)
∗

𝑡
𝑥
(4,

3) = 0, 𝑓
𝑦

= 𝑡
𝑦
(3, 3)
∗

𝑡
𝑦
(4, 4) − 𝑡

𝑦
(3, 4)
∗

𝑡
𝑦
(4, 3) =

0, 𝑓
𝜃
= 𝑡
𝜃
(3, 3)
∗

𝑡
𝜃
(4, 4) − 𝑡

𝜃
(3, 4)
∗

𝑡
𝜃
(4, 3) = 0.

(2) Clamped-Clamped: 𝑓
𝑥

= 𝑡
𝑥
(1, 3)
∗

𝑡
𝑥
(2, 4) − 𝑡

𝑥
(1,

4)
∗

𝑡
𝑥
(2, 3) = 0, 𝑓

𝑦
= 𝑡
𝑦
(1, 3)
∗

𝑡
𝑦
(2, 4) − 𝑡

𝑦
(1, 4)
∗

𝑡
𝑦
(2,

3) = 0, 𝑓
𝜃
= 𝑡
𝜃
(1, 3)
∗

𝑡
𝜃
(2, 4) − 𝑡

𝜃
(1, 4)
∗

𝑡
𝜃
(2, 3) = 0.
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Figure 2: The doubly asymmetric, continuous channel section and the cross section of beam of example 2 with warping allowed at B, C, and
D but fully constrained at A.

(3) Simply-Simply: 𝑓
𝑥

= 𝑡
𝑥
(1, 2)
∗

𝑡
𝑥
(3, 4) − 𝑡

𝑥
(3, 2)
∗

𝑡
𝑥
(1,

4) = 0, 𝑓
𝑦

= 𝑡
𝑦
(1, 2)
∗

𝑡
𝑦
(3, 4) − 𝑡

𝑦
(3, 2)
∗

𝑡
𝑦
(1, 4) =

0, 𝑓
𝜃
= 𝑡
𝜃
(1, 2)
∗

𝑡
𝜃
(3, 4) − 𝑡

𝜃
(3, 2)
∗

𝑡
𝜃
(1, 4) = 0.

(4) Free-Free: 𝑓
𝑥

= 𝑡
𝑥
(3, 1)
∗

𝑡
𝑥
(4, 2) − 𝑡

𝑥
(3, 2)
∗

𝑡
𝑥
(4, 1) =

0, 𝑓
𝑦
= 𝑡
𝑦
(3, 1)
∗

𝑡
𝑦
(4, 2) − 𝑡

𝑦
(3, 2)
∗

𝑡
𝑦
(4, 1) = 0, 𝑓

𝜃
=

𝑡
𝜃
(3, 1)
∗

𝑡
𝜃
(4, 2) − 𝑡

𝜃
(3, 2)
∗

𝑡
𝜃
(4, 1) = 0.

(5) Clamped-Simply: 𝑓
𝑥

= 𝑡
𝑥
(1, 3)
∗

𝑡
𝑥
(3, 4) − 𝑡

𝑥
(1,

4)
∗

𝑡
𝑥
(3, 3) = 0, 𝑓

𝑦
= 𝑡
𝑦
(1, 3)
∗

𝑡
𝑦
(3, 4) − 𝑡

𝑦
(1, 4)
∗

𝑡
𝑦
(3,

3) = 0, 𝑓
𝜃
= 𝑡
𝜃
(1, 3)
∗

𝑡
𝜃
(3, 4) − 𝑡

𝜃
(1, 4)
∗

𝑡
𝜃
(3, 3) = 0.

In frequency equations the values of 𝜔, which set the
determinant to zero, are the uncoupled angular frequencies.

2.3. Coupled Frequencies. Ignoring the dynamic coupling
effect of structure caused by the eccentricity between the
center of shear rigidity and the geometric center the coupled
frequencies of the shear torsional beam can be obtained by
using uncoupled frequencies and the well-known equation as
follows [28]:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜔
(𝑖)
2

𝑗
− 𝜔
(𝑖)
2

𝑥
0 −𝑦

𝑐
𝜔
(𝑖)
2

𝑗

0 𝜔
(𝑖)
2

𝑗
− 𝜔
(𝑖)
2

𝑦
𝑥
𝑐
𝜔
(𝑖)
2

𝑗

−𝑦
𝑐
𝜔
(𝑖)
2

𝑗
𝑥
𝑐
𝜔
(𝑖)
2

𝑗
𝑟
2

𝑚
(𝜔
(𝑖)
2

𝑗
− 𝜔
(𝑖)
2

𝜃
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0

(𝑗 = 1, 2, 3) (𝑖 = 1, 2, 3 . . .) .

(31)

3. Procedure of Computation

A program that considers the method presented in this study
as a basis has been prepared in MATLAB, and the operation
stages are presented below.

(1) element dynamic Transfer matrices are calculated for
each element by using (24), (26), and (28).

(2) System dynamic transfer matrices (see (29)–(30)) are
obtained with the help of element transfer matrices.

(3) The angular frequencies of uncoupled vibrations are
obtained by using the boundary conditions.

(4) The coupled angular frequencies are found by using
(31).

4. A Numerical Example

In this part of the study two numerical examples were solved
by a program written in MATLAB to validate the presented
method. The results are compared with those given in the
literature.

4.1. Numerical Example 1. The first example considers the
beam studied by Tanaka and Bercin [11]. A typical uniform
thin-walled beam has a length of 1.5m with a doubly
asymmetric cross section. The properties of the cross section
are as follows:

𝑥
𝑐
= 0.02316, 𝑦

𝑐
= 0.02625, 𝜌 = 1.947 kg/m, 𝑟

2

𝑚
=

3.0303
∗

10
−3m2,

𝐸𝐼
𝑥

= 73480Nm2, 𝐸𝐼
𝑦

= 16680Nm2, 𝐸𝐼
𝑤

=

23.64Nm4, and𝐺𝐽
0
= 10.81Nm2.

The first three coupled natural frequencies of the beam are
calculated by the presented method and compared with the
results by Tanaka and Bercin [11] and Rafezy and Howson
[24] in Table 1 for clamped-free (C-F) and simply-simply (S-
S) boundary conditions.

4.2. Numerical Example 2. A typical continuous beam with
a doubly asymmetric cross section is considered in this
example (Figure 2).

The beam comprises a thin-walled outer layer and a shear
core with the following properties between support points A
and B. The typical uniform thin-walled beam has a length of
1.5m with a doubly asymmetric cross section. The properties
of the cross section are as follows:

𝑥
𝑠

= 0.08, 𝑦
𝑠

= 0.03, 𝑥
𝑐

= 0.05, 𝑦
𝑐

= 0.02, 𝜌 =

20 kg/m, 𝑟
2

𝑚
= 0.008m2,

𝐸𝐼
𝑥

= 2.16
∗

10
6Nm2, 𝐸𝐼

𝑦
= 1.73

∗

10
6Nm2, 𝐺

𝑡
𝐽
𝑡
=

3200Nm2,
𝐸𝐼
𝑤

= 1.4
∗

10
3Nm4, 𝐺𝐴

𝑥
= 600000N, 𝐺𝐴

𝑦
=

600000N, and 𝐺𝐽
𝑐
= 3800Nm2.

The shear core is omitted between points B and D, where
the cross-sectional properties remain unchanged, except that
𝐺𝐴
𝑥

= 𝐺𝐴
𝑦

= 𝐺𝐽
𝑐
= 0, and the small change in 𝜌 has been

ignored.
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Table 1: Coupled natural frequencies for the beam of example 1.

Natural frequencies (Hz)

BC Proposed method Tanaka and Bercin [11] Rafezy and Howson [24]
𝑓
1

𝑓
2

𝑓
3

𝑓
1

𝑓
2

𝑓
3

𝑓
1

𝑓
2

𝑓
3

C-F 17.17 27.31 59.10 17.03 27.58 59.25 17.17 27.31 59.10
S-S 44.71 75.14 164.87 41.48 74.12 164.11 44.71 75.14 164.87

Table 2: Coupled natural frequencies of the continuous beam of
example 2.

Frequency
number This study Rafezy and Howson[24] Difference (%)

1 6.906 6.940 −0.49
2 19.763 19.796 −0.17
3 35.461 33.836 4.80

The first three coupled natural frequencies of the beam
are calculated by the presented method and compared with
the results of Rafezy and Howson [24] in Table 2.

The main source of error between the proposed method
and Rafezy and Howson methods is the eccentricity between
the center of shear stiffness and flexural stiffness which was
not taken into account in the proposed method.

5. Conclusions

This paper presents a method for a free vibration analysis
of a thin-walled beam of doubly asymmetric cross section
filled with shear sensitive material. In the study, first of all,
a dynamic transfer matrix method was obtained for planar
shear flexure and torsional motion.Then, uncoupled angular
frequencies were obtained by using dynamic element transfer
matrices and boundary conditions. Coupled frequencieswere
obtained by the well-known two-dimensional approaches.
It was observed from the sample taken from the literature
that the presented method gave sufficient results. The error
margin of the proposed method is shown to be less than 5%.
Themain source of error is the eccentricity between the center
of shear stiffness and flexural stiffness which was not taken
into account in the proposed method.

The transfer matrix method is an efficient and computer-
ized method which also provides a fast and practical solution
since the dimension of thematrix for the elements and system
never changes. Because of this the proposedmethod is simple
and accurate enough to be used both at the concept design
stage and for final analyses.
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