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Abstract. In this paper, using the new and improved form of Hölder’s integral inequality called Hölder-
İşcan integral inequality, some new inequalities of the right-hand side of Hermite-Hadamard type inequality
for prequasiinvex functions are established. The results obtained are compared with the known results. It
is shown that the results obtained in this paper are better than those known ones.

1. Introduction

The concept of convexity has become a deep research area in pure and applied sciences. In recent years,
several extensions and generalizations of classical convexity have been studied by many researchers using
novel methods and ideas. Hanson [6] introduced an important generalization of convex functions called
invex functions. Ben-Israel and Mond [4] introduced the notions of invex sets and preinvex functions.
For recent applications and generalizations of the preinvex functions, we refer the interested reader to
[2, 3, 9, 11, 14, 17].

Inequalities play a fundamental role in many branches of pure and applied mathematics. A number
of studies have shown that convexity has a closely relationship with the theory of inequalities. One of the
most famous inequality for convex functions is named Hermite-Hadamard integral inequality as follows:

Let f : I ⊆ R→ R be a convex mapping defined on the interval I of real numbers and a, b ∈ I with a < b.
Then

f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
2

. (1)

Recently, Hermite-Hadamard inequality for convex functions and their variant forms has been a rich
sourge of inspiration. For recent results, improvements, extensions and generalizations the inequality (1),
please refer the monographs [1, 5, 7, 14, 15, 17, 19].

2010 Mathematics Subject Classification. 26D15; 26D20; 26D07
Keywords. Hermite-Hadamard inequality, invex set, preinvex function, prequasiinvex, Hölder’s integral inequality, power-mean
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2. Preliminaries

Definition 2.1. [20] Let K be a closed set in Rn. Suppose that f : K → R and η : K × K → R be continuous
functions. Let u ∈ K, then the set K is said to be invex at each u with respect to η (., .) , if

u + tη (v,u) ∈ K,∀u, v ∈ K, t ∈ [0, 1] .

K is said to be an invex set with respect to η, if K is invex at each u ∈ K. The invex set K is also called η-connected set.

Note that if η (v,u) = v − u, invexity reduces to convexity. Thus, every convex set is also an invex set
with respect to η (v,u) = v − u, but the converse is not true in general.

Definition 2.2. [18] The function f on the invex set K is said to be preinvex with respect to η, if the inequality

f
(
u + tη (v,u)

)
≤ (1 − t) f (u) + t f (v)

holds for all u, v ∈ K and t ∈ [0, 1] .

Definition 2.3. [16] The function f on the invex set K is said to be prequasiinvex with respect to η, if

f
(
u + tη (v,u)

)
≤ max

{
f (u) , f (v)

}
for all u, v ∈ K and t ∈ [0, 1] .

Recently, Noor [14] has obtained the new form of Hermite-Hadamard inequality for the preinvex
functions:

Theorem 2.4. [14] Let f :
[
a, a + η (b, a)

]
→ (0,∞) be a preinvex function on the interval of the real numbers K◦

(interior of K) and a, b ∈ K◦ with a < a + η (b, a) . Then the following inequality holds:

f
(

2a + η (b, a)
2

)
≤

1
η (b, a)

∫ a+η(b,a)

a
f (x) dx ≤

f (a) + f (b)
2

. (2)

The famous Hölder integral inequality is given as follows:

Theorem 2.5. [13] Let p > 1 and 1/p + 1/q = 1. If f and 1 are real functions defined on [a, b] and if
∣∣∣ f ∣∣∣p and

∣∣∣1∣∣∣q are
integrable functions on [a, b], then

∫ b

a

∣∣∣ f (x) 1 (x)
∣∣∣ dx ≤

(∫ b

a

∣∣∣ f (x)
∣∣∣p dx

) 1
p
(∫ b

a

∣∣∣1 (x)
∣∣∣q dx

) 1
q

,

with equality holding if and only if A
∣∣∣ f (x)

∣∣∣p = B
∣∣∣1 (x)

∣∣∣q almost everywhere, where A and B are constants.

Power-mean integral inequality as a different version of Hölder integral inequality can be given as
follows:

Theorem 2.6. [13] Let q ≥ 1. If f and 1 are real functions defined on [a, b] and if
∣∣∣ f ∣∣∣, ∣∣∣ f ∣∣∣ ∣∣∣1∣∣∣q are integrable functions

on [a, b], then∫ b

a

∣∣∣ f (x) 1 (x)
∣∣∣ dx ≤

(∫ b

a

∣∣∣ f (x)
∣∣∣ dx

)1− 1
q
(∫ b

a

∣∣∣ f (x)
∣∣∣ ∣∣∣1 (x)

∣∣∣q dx
) 1

q

.

In [12], Latif obtained some inequalities of Hermite-Hadamard type for differentiable prequasiinvex
mappings connected with the right part of the inequality (2) were proved using the following lemma:
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Lemma 2.7. Let K ⊆ R be an open invex subset with respect to η : K × K → R. Suppose that f : K → R is a
differentiable mapping on K such that f ′ ∈ L

([
a, a + η (b, a)

])
. Then for all a, b ∈ K with a < a + η (b, a) the following

equality holds:

f (a) + f
(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

=
η (b, a)

4

[∫ 1

0
(−t) f ′

(
a +

(1 − t
2

)
η (b, a)

)
dt +

∫ 1

0
t f ′

(
a +

(1 + t
2

)
η (b, a)

)
dt

]
.

In [12], Latif obtained the following result for prequasiinvex functions using the above lemma:

Theorem 2.8. Let K ⊆ [0,∞) be an open invex subset with respect to η : K×K→ R and a, b ∈K with a < a+η (b, a) .
Assume that f : K→ R is a differentiable mapping on K such that f ′ ∈ L

([
a, a + η (b, a)

])
. If

∣∣∣ f ′∣∣∣ is prequasiinvex on
K, then for every a, b ∈ K with η (b, a) > 0 we have the following inequality:∣∣∣∣∣∣ f (a) + f

(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)
8

[
sup

{∣∣∣ f ′ (a)
∣∣∣ , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣} + sup
{∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣ , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣}] . (3)

In [12], Latif obtained the following result for prequasiinvex functions using Lemma 2.7 and Hölder
integral inequality:

Theorem 2.9. Let K ⊆ [0,∞) be an open invex subset with respect to η : K×K→ R and a, b ∈K with a < a+η (b, a) .
Assume that f : K → R is a differentiable mapping on K such that f ′ ∈ L

([
a, a + η (b, a)

])
. If

∣∣∣ f ′∣∣∣q is prequasiinvex
on K for q > 1, then, for every a, b ∈ K with η (b, a) > 0 we have the following inequality:∣∣∣∣∣∣ f (a) + f

(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)

4
(
p + 1

)1/p

[ (
sup

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q})1/q

+

(
sup

{∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q ]

, (4)

where 1/p + 1/q = 1.

In [12], Latif also obtained the following result for prequasiinvex functions using Lemma 2.7 and power-
mean integral inequality:

Theorem 2.10. Let K ⊆ R be an open invex subset with respect to η : K ×K→ R and a, b ∈ K with a < a + η (b, a) .
Suppose f : K→ R is a differentiable mapping on K such that f ′ ∈ L

([
a, a + η (b, a)

])
. If

∣∣∣ f ′∣∣∣q is prequasiinvex on K
for q ≥ 1, then for every a, b ∈ K with η (b, a) > 0 the following inequality holds:∣∣∣∣∣∣ f (a) + f

(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)
8

[ (
sup

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q})1/q

+

(
sup

{∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q ]

.

(5)

In [8], İşcan obtained the following integral inequality which gives better results than classical Hölder
inequality:
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Theorem 2.11. (Hölder-İşcan Integral Inequality) Let p > 1 and 1/p + 1/q = 1. If f and 1 are real functions defined
on [a, b] and if

∣∣∣ f ∣∣∣p and
∣∣∣1∣∣∣q are integrable functions on [a, b], then

i)
∫ b

a

∣∣∣ f (x) 1 (x)
∣∣∣ dx ≤

1
b − a

{ (∫ b

a
(b − x)

∣∣∣ f (x)
∣∣∣p dx

) 1
p
(∫ b

a
(b − x)

∣∣∣1 (x)
∣∣∣q dx

) 1
q

+

(∫ b

a
(x − a)

∣∣∣ f (x)
∣∣∣p dx

) 1
p
(∫ b

a
(x − a)

∣∣∣1 (x)
∣∣∣q dx

) 1
q
}

(6)

ii)
1

b − a

{ (∫ b

a
(b − x)

∣∣∣ f (x)
∣∣∣p dx

) 1
p
(∫ b

a
(b − x)

∣∣∣1 (x)
∣∣∣q dx

) 1
q

+

(∫ b

a
(x − a)

∣∣∣ f (x)
∣∣∣p dx

) 1
p
(∫ b

a
(x − a)

∣∣∣1 (x)
∣∣∣q dx

) 1
q
}

≤

(∫ b

a

∣∣∣ f (x)
∣∣∣p dx

) 1
p
(∫ b

a

∣∣∣1 (x)
∣∣∣q dx

) 1
q

In [10], a different represent of Hölder-İşcan inequality was given as follows:

Theorem 2.12. (Improved Power-mean Integral Inequality) Let q ≥ 1. If f and 1 are real functions defined on [a, b]
and if

∣∣∣ f ∣∣∣, ∣∣∣ f ∣∣∣ ∣∣∣1∣∣∣q are integrable functions on [a, b], then

i)
∫ b

a

∣∣∣ f (x) 1 (x)
∣∣∣ dx ≤

1
b − a

{ (∫ b

a
(b − x)

∣∣∣ f (x)
∣∣∣ dx

)1− 1
q
(∫ b

a
(b − x)

∣∣∣ f (x)
∣∣∣ ∣∣∣1 (x)

∣∣∣q dx
) 1

q

+

(∫ b

a
(x − a)

∣∣∣ f (x)
∣∣∣ dx

)1− 1
q
(∫ b

a
(x − a)

∣∣∣ f (x)
∣∣∣ ∣∣∣1 (x)

∣∣∣q dx
) 1

q
}

(7)

ii)
1

b − a

{ (∫ b

a
(b − x)

∣∣∣ f (x)
∣∣∣ dx

)1− 1
q
(∫ b

a
(b − x)

∣∣∣ f (x)
∣∣∣ ∣∣∣1 (x)

∣∣∣q dx
) 1

q

+

(∫ b

a
(x − a)

∣∣∣ f (x)
∣∣∣ dx

)1− 1
q
(∫ b

a
(x − a)

∣∣∣ f (x)
∣∣∣ ∣∣∣1 (x)

∣∣∣q dx
) 1

q
}

≤

(∫ b

a

∣∣∣ f (x)
∣∣∣ dx

)1− 1
q
(∫ b

a

∣∣∣ f (x)
∣∣∣ ∣∣∣1 (x)

∣∣∣q dx
) 1

q

3. Main Results

In this section, we will obtain some new upper bounds for the right-hand side of Hermite-Hadamard
inequality for differentiable prequasiinvex functions and we will show that the new upper bounds we
obtained are better than the ones given in [12].

Theorem 3.1. Let K ⊆ [0,∞) be an open invex subset with respect to η : K×K→ R and a, b ∈K with a < a+η (b, a) .
Assume that f : K → R is a differentiable mapping on K such that f ′ ∈ L

([
a, a + η (b, a)

])
. If

∣∣∣ f ′∣∣∣q is prequasiinvex
on K for q > 1, then, for every a, b ∈ K with η (b, a) > 0 we have the following inequality:∣∣∣∣∣∣ f (a) + f

(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣ ≤ η (b, a)
4

(1
2

)1/q ( 1
p + 2

)1/p ( 1
p + 1

)1/p

+ 1


×

[ (
sup

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q})1/q

+

(
sup

{∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q ]

, (8)
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where 1/p + 1/q = 1.

Proof. From Lemma 2.7 and using Hölder-İşcan integral inequality (6), we have∣∣∣∣∣∣ f (a) + f
(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)
4

[∫ 1

0
|−t|

∣∣∣∣∣ f ′ (a +
(1 − t

2

)
η (b, a)

)∣∣∣∣∣ dt +

∫ 1

0
|t|

∣∣∣∣∣ f ′ (a +
(1 + t

2

)
η (b, a)

)∣∣∣∣∣ dt
]

≤
η (b, a)

4

[ (∫ 1

0
(1 − t) |−t|p dt

)1/p (∫ 1

0
(1 − t)

∣∣∣∣∣ f ′ (a +
(1 − t

2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q

+

(∫ 1

0
t |−t|p dt

)1/p (∫ 1

0
t
∣∣∣∣∣ f ′ (a +

(1 − t
2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q ]

+
η (b, a)

4

[ (∫ 1

0
(1 − t) |t|p dt

)1/p (∫ 1

0
(1 − t)

∣∣∣∣∣ f ′ (a +
(1 + t

2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q

+

(∫ 1

0
t |t|p dt

)1/p (∫ 1

0
t
∣∣∣∣∣ f ′ (a +

(1 + t
2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q ]

.

By the prequasiinvexity of
∣∣∣ f ′∣∣∣q on K for q > 1, then, for every a, b ∈ K with η (b, a) > 0 and t ∈ [0, 1] ,we have∣∣∣∣∣ f ′ (a +

(1 − t
2

)
η (b, a)

)∣∣∣∣∣q ≤ sup
{∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q} , (9)

and ∣∣∣∣∣ f ′ (a +
(1 + t

2

)
η (b, a)

)∣∣∣∣∣q ≤ sup
{∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q} , (10)

where 1/p + 1/q = 1.

Using the inequalities (9) and (10) we have,∣∣∣∣∣∣ f (a) + f
(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)
4

(1
2

)1/q
( 1(

p + 1
) (

p + 2
) )1/p

+

(
1

p + 2

)1/p (sup
{∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q})1/q

+
η (b, a)

4

(1
2

)1/q
( 1(

p + 1
) (

p + 2
) )1/p

+

(
1

p + 2

)1/p (sup
{∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q

=
η (b, a)

4

(1
2

)1/q ( 1
p + 2

)1/p ( 1
p + 1

)1/p

+ 1


×

[ (
sup

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q})1/q

+

(
sup

{∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q ]

where∫ 1

0
tdt =

∫ 1

0
(1 − t) dt =

1
2
,



S. Özcan / Filomat 33:14 (2019), 4377–4385 4382

∫ 1

0
t |t|p dt =

1
p + 2

and ∫ 1

0
(1 − t) |t|p dt =

1(
p + 1

) (
p + 2

) .
Remark 3.2. The inequality (8) gives better results than the inequality (4). Let us show that(1

2

)1/q ( 1
p + 2

)1/p ( 1
p + 1

)1/p

+ 1

 ≤ (
1

p + 1

)1/p

.

An easy calculation gives(
1
2

)1/q ( 1
p+2

)1/p
[(

1
p+1

)1/p
+ 1

]
(

1
p+1

)1/p =
(1

2

)1/q
( 1

p + 2

)1/p

+

(
p + 1
p + 2

)1/p .
Thus, using concavity of the function h : [0,∞)→ R, h (x) = xs, 0 < s ≤ 1, we have(1

2

)1/q
( 1

p + 2

)1/p

+

(
p + 1
p + 2

)1/p = 21/p

1
2

(
1

p + 2

)1/p

+
1
2

(
p + 1
p + 2

)1/p
≤ 21/p


1

p+2 +
p+1
p+2

2


1/p

= 1

which is the required.

Theorem 3.3. Let K ⊆ R be an open invex subset with respect to η : K × K→ R and a, b ∈ K with a < a + η (b, a) .
Suppose f : K→ R is a differentiable mapping on K such that f ′ ∈ L

([
a, a + η (b, a)

])
. If

∣∣∣ f ′∣∣∣q is prequasiinvex on K
for q ≥ 1, then for every a, b ∈ K with η (b, a) > 0 the following inequality holds:∣∣∣∣∣∣ f (a) + f

(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)
4

(
1

q + 1

)1/q [ (
sup

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q})1/q

+

(
sup

{∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q ]

. (11)

Proof. Using Lemma 2.7, power-mean integral inequality and prequasiinvexity of
∣∣∣ f ′∣∣∣q, we get∣∣∣∣∣∣ f (a) + f

(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)
4

[∫ 1

0
|−t|

∣∣∣∣∣ f ′ (a +
(1 − t

2

)
η (b, a)

)∣∣∣∣∣ dt +

∫ 1

0
|t|

∣∣∣∣∣ f ′ (a +
(1 + t

2

)
η (b, a)

)∣∣∣∣∣ dt
]
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≤
η (b, a)

4

(∫ 1

0
dt

)1−1/q (∫ 1

0
|−t|q

∣∣∣∣∣ f ′ (a +
(1 − t

2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q

+
η (b, a)

4

(∫ 1

0
dt

)1−1/q (∫ 1

0
|t|q

∣∣∣∣∣ f ′ (a +
(1 + t

2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q

≤
η (b, a)

4

(
1

q + 1

)1/q (
sup

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q})1/q

+
η (b, a)

4

(
1

q + 1

)1/q (
sup

{∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q

=
η (b, a)

4

(
1

q + 1

)1/q [ (
sup

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q})1/q

+

(
sup

{∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q ]

,

where∫ 1

0
|t|q dt =

1
q + 1

.

If q = 1 in the inequality (11), then we get the following result:

Corollary 3.4. Let K ⊆ [0,∞) be an open invex subset with respect to η : K×K→ R and a, b ∈K with a < a+η (b, a) .
Assume that f : K→ R is a differentiable mapping on K such that f ′ ∈ L

([
a, a + η (b, a)

])
. If

∣∣∣ f ′∣∣∣ is prequasiinvex on
K, then for every a, b ∈ K with η (b, a) > 0 we have the following inequality:∣∣∣∣∣∣ f (a) + f

(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)
8

[
sup

{∣∣∣ f ′ (a)
∣∣∣ , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣} + sup
{∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣ , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣} ]

. (12)

Note that, the inequality (12) coincides with the inequality (3) in Theorem 2.8.

Theorem 3.5. Let K ⊆ R be an open invex subset with respect to η : K × K→ R and a, b ∈ K with a < a + η (b, a) .
Suppose f : K→ R is a differentiable mapping on K such that f ′ ∈ L

([
a, a + η (b, a)

])
. If

∣∣∣ f ′∣∣∣q is prequasiinvex on K
for q ≥ 1, then for every a, b ∈ K with η (b, a) > 0 the following inequality holds:

∣∣∣∣∣∣ f (a) + f
(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣ ≤ η (b, a)
4

(1
2

)1−1/q ( 1
q + 2

)1/q ( 1
q + 1

)1/q

+ 1


×

[ (
sup

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q})1/q

+

(
sup

{∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q ]

. (13)

Proof. From Lemma 2.7, improved power-mean integral inequality (7) and prequasiinvexity of
∣∣∣ f ′∣∣∣q, we
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have ∣∣∣∣∣∣ f (a) + f
(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)
4

[∫ 1

0
|−t|

∣∣∣∣∣ f ′ (a +
(1 − t

2

)
η (b, a)

)∣∣∣∣∣ dt +

∫ 1

0
|t|

∣∣∣∣∣ f ′ (a +
(1 + t

2

)
η (b, a)

)∣∣∣∣∣ dt
]

≤
η (b, a)

4

[ (∫ 1

0
(1 − t) dt

)1−1/q (∫ 1

0
(1 − t) |−t|q

∣∣∣∣∣ f ′ (a +
(1 − t

2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q

+

(∫ 1

0
tdt

)1−1/q (∫ 1

0
t |−t|q

∣∣∣∣∣ f ′ (a +
(1 − t

2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q ]

+
η (b, a)

4

[ (∫ 1

0
(1 − t) dt

)1−1/q (∫ 1

0
(1 − t) |t|q

∣∣∣∣∣ f ′ (a +
(1 + t

2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q

+

(∫ 1

0
tdt

)1−1/q (∫ 1

0
t |t|q

∣∣∣∣∣ f ′ (a +
(1 + t

2

)
η (b, a)

)∣∣∣∣∣q dt
)1/q ]

≤
η (b, a)

4

(1
2

)1−1/q ( 1
q + 2

)1/q ( 1
q + 1

)1/q

+ 1

 (sup
{∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q})1/q

+
η (b, a)

4

(1
2

)1−1/q ( 1
q + 2

)1/q ( 1
q + 1

)1/q

+ 1

 (sup
{∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q

=
η (b, a)

4

(1
2

)1−1/q ( 1
q + 2

)1/q ( 1
q + 1

)1/q

+ 1


×

[ (
sup

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣q})1/q

+

(
sup

{∣∣∣∣∣ f ′ (a +
1
2
η (b, a)

)∣∣∣∣∣q , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣q})1/q ]

,

where∫ 1

0
(1 − t) |t|q dt =

1(
q + 1

) (
q + 2

)
and ∫ 1

0
t |t|q dt =

1
q + 2

.

If q = 1 in the inequality (13), then we get the following result:

Corollary 3.6. Let K ⊆ [0,∞) be an open invex subset with respect to η : K×K→ R and a, b ∈K with a < a+η (b, a) .
Assume that f : K→ R is a differentiable mapping on K such that f ′ ∈ L

([
a, a + η (b, a)

])
. If

∣∣∣ f ′∣∣∣ is prequasiinvex on
K, then for every a, b ∈ K with η (b, a) > 0 we have the following inequality:∣∣∣∣∣∣ f (a) + f

(
a + η (b, a)

)
2

−
1

η (b, a)

∫ a+η(b,a)

a
f (x) dx

∣∣∣∣∣∣
≤

η (b, a)
8

[
sup

{∣∣∣ f ′ (a)
∣∣∣ , ∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣} + sup
{∣∣∣∣∣ f ′ (a +

1
2
η (b, a)

)∣∣∣∣∣ , ∣∣∣ f ′ (a + η (b, a)
)∣∣∣}] . (14)

Note that, the inequality (14) coincides with the inequality (3) in Theorem 2.8.

Remark 3.7. The inequality (13) is better than the inequality (5). Proof can be made similar to Remark 3.2.
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