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Abstract 
A spatial simulation method in.mp4 format was proposed to determine Fukushima radioactive fallout transport and the 
Absorbed Dose Rate, Annual Effective Dose Equivalent, and Excess Lifetime Cancer Risk were determined for 10 months 
after the accident (March 11 2011). The findings of this study demonstrate that an appropriate ARIMA model can be applied 
for radiation dose time-series in the case of nuclear reactor accidents like Chernobyl and Fukushima to predict the future 
air dose rates, which can provide valuable information in determining the evacuation zones, decontamination processes, 
and radiation protection progresses. The model forecasted results and the actual observation data in the same period shows 
a gradual decrease in the air dose rates during the prediction period. Moreover, there is a good agreement between them as 
the prediction and observation scatter plot follows each other with small variations. These results provide important insights 
into the predictability of ARIMA models; thus, the models were utilized to forecast the air dose rates for the period (January 
2020–October 2020).
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Introduction

Fukushima Daiichi Nuclear Power Plant (FDNPP) with 
approximately 3.5 km2 area is located at 37°25′23″N and 
141°01′59″E in Futaba, Fukushima Prefecture-Japan [1], 
Tokyo Electric Power Company (TEPCO) constructed and 
operated the power plant, there were six Boiling Water 
Reactors (BWR) at the site. The Units 1–5 were built as 
Mark I type (light bulb torus) containment structures. 
Unit 6 is a Mark II type (over/under) containment struc-
ture [2–4]. On 11 March 2011 at 2:46 pm Japanese time 
one of the most powerful earthquake (Great East Japan 
Earthquake) around the world since 1900 with MW 9 hit 
the eastern coast of Honshu Island exactly at 130 km 

offshore of the Sendai city. The epicenter of the earth-
quake in the sea at around 200 km, and the earthquake 
resulted in huge tsunami waves with heights up to 40 m 
in Miyako–Iwate Prefecture [5–7]. Besides, the massive 
earthquake and its resultant gigantic tsunami caused to 
15,891 deaths and 2579 missing people [8]. Furthermore, 
the tsunami resulted in a level 7 nuclear accident accord-
ing to International Nuclear Events Scale, the accident led 
to release a huge amount of radioactive materials into the 
environment [9].

The accident released an enormous quantity of radionu-
clides from exploded reactors into the atmosphere, Pacific 
Ocean and ground [10, 11]. The concentration of released 
137Cs and 134Cs similarly reached the peak in the mid of 
March 2011 with the estimated amount as 15.2–20.4 PBq 
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Namie Town in Fukushima Prefecture, Japan [12]. The dis-
tribution of gamma-emitting radionuclides resulted different 
air dose rates around the FDNPP regions [13]. Therefore, on 
March 11, 2011, an evacuation zone within a 3 km radius 
from FDNPP and indoor zone within a 10 km radius were 
ordered by the Japanese government. One day later March 
12, 2011, the evacuation zone was widened to include areas 
within a 10 km radius, on the same day, the evacuation 
zone was expanded to areas within a 20 km radius [14]. In 
the early stage of the accident, soil samples were collected 
from 15 to 30 March 2011 at 15 various positions around 
the FDNPP, in which many fission products were detected 
including 129mTe, 129Te, 131I, 132Te, 134Cs, 136Cs,137Cs, 140Ba, 
and 140La [15]. Another crucial radiation monitoring step 
was the mapping project in between June 2011 and Decem-
ber 2012. The project showed that the radionuclides particu-
larly radiocesium were densely deposited into the northwest 
of the FDNPP site, because of the plume released at 12 to 
15 JST (Japanese Standard Time) on 15 March 2011 flowed 
northwestward, and wet deposition occurred with precipita-
tion in the nighttime of the same day [16]. In contrast, the 
ratios of 131I and 129mTe to 137Cs was higher in the regions 
of the south of the FDNPP.

After the accident in Fukushima prefecture and neighbor-
ing areas the ambient air dose rates have been continuously 
measured by various methods through car and air-borne sur-
veys, and in-situ techniques [17]. Long term measurements 
can assure the public, monitor hazard levels reduction, and 
give insights about future preparations like decontamination 
[18]. Fortunately, the observations show that the amount of 
air doses has been reduced significantly in residential areas 
compared to the forests and remote areas, owing to the radi-
oactive decay of radiocesium, decontamination processes, 
the activity of the inhabitants, and the penetration into the 
deeper depths of the soil [19, 20]. Nevertheless, this situa-
tion can be distinct for residential houses, as penetration and 
deposition are probable due to radionuclides through vents, 
doors and windows [21, 22].

In some cases, the ambient air dose rate measurements 
using the aforementioned methods are not easily carried out 
for example, when the roads are closed and the surface of the 
earth is covered with vegetation. For these reasons, research-
ers have taken advantage of the use of spatial–temporal sim-
ulation models to study the effects of radioactive fallout and 
isotope distributions [23, 24]. Moreover, the autoregressive 

integrated moving average (ARIMA) model has already 
been used in the field of nuclear physics for forecasting the 
226Ra, 232Th and 40K concentrations in four regions of Istan-
bul [25], nuclear fuel cycle price estimation [26], and radon 
gas concentrations time-series estimation for earthquake 
prediction purposes [27, 28]. It seems that, this model has 
not been used by scholars for estimating the Fukushima air 
dose rates. There are many types of time series analysis such 
as stochastic, neural networks, and SVM approaches. We 
preferred for the ARIMA analysis in this study because the 
use of this method is new for quantities in this study. This 
study can make a major contribution to the applicability of 
ARIMA model in the case of nuclear accidents.

The main objective of the current study is to predict 
future air dose rates by using ARIMA model in a return 
zone, where the inhabitants entry is forbidden [29] and 
the annual cumulative dose is greater than 20 mSv [30]. 
Evaluating the radiological hazard indices relying on the 
output data. In addition, air radiation transport will be shown 
through the simulation animations based on this model. 
These simulations estimate and give a visual indication of 
the radioactivity change in 10 months after the accident.

Research area

There are eight air dose rate monitoring points (MP1-MP8) 
around the FDNPP. Detectors were positioned at a height of 
about (1 m) from the ground surface because in the case of 
an adult majority of sensitive human organs are located at 
this height [31].

This study selected time-series data of air dose rates for 
four monitoring points (MP1, MP2, MP4, and MP5) [32, 
33], which are located in between the north to west direc-
tions of the FDNNP site as shown in Fig. 1. As, it has been 
observed that the majority of radionuclides detected in these 
directions during the accident due to the weather conditions 
[34]. The details of each monitoring point were obtained 
from the International Atomic Energy Agency [35]. TEPCO 
has been running measurements, in normal working condi-
tions each monitoring point measures the air dose rate in 
every 10 min time intervals, 144 measurements in a day, 
about 4,320 measurements in a month and a total 51,840 
measurements in a year.
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For this study, the daily average data were retrieved from 
(https://​www.​tepco.​co.​jp/​en/​nu/​fukus​hima-​np/​f1/​index-e.​
html) for the first day of each month as a training dataset 
(e.g. 1st January 2013, 1st February 2013 to 1st December 
2018), totally 72 months of data were prepared. Figure 2 
presents the graphical summary of the train dataset of air 

dose rates. The data from 1 January 2019 to 1 October 2019 
(there is no particular reason for such selection of data) are 
used as a test dataset to assess the model’s predictability 
by calculating both root mean square (RMSE) and mean 
absolute errors (MAPE) between the test and the predicted 
values from the fitted models. Also, the radiological hazard 

Fig. 1   The map of precise loca-
tion of monitoring points (MP) 
around the FDNPP site ( modi-
fied from Google Earth)

Fig. 2   Box and whisker plot of 
the training dataset of air dose 
rates

https://www.tepco.co.jp/en/nu/fukushima-np/f1/index-e.html
https://www.tepco.co.jp/en/nu/fukushima-np/f1/index-e.html
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indices for the training period as well as the test period were 
computed. Finally, the best identified ARIMA models were 
applied to predict the air dose rate of monitoring points from 
(1st January–1st October 2020). In this work, MATLAB® 
software program was used to select, estimate and forecast 
the air dose rates for all monitoring points.

Methods

The autoregressive integrated moving average 
(ARIMA) model

A time-series is a collection of x(t) observations, each 
reported at a specific time (t), the observations can be dis-
played as a function of (t) in a time-series plot [36, 37]. 
Time-series data forecasting can be done using several 
models such as stochastic, neural networks, and SVM, 
and ARIMA can be said one of the most popular models 

[38, 39]. The ARIMA model was popularized by Box and 
Jenkins in the 1970s [40] and the model can be applied 
when the observations are stationary [41, 42]. In many 
fields such as health, economic, financial, engineering and 
environmental applications, and physics this model has 
been utilized. The general form of Autoregressive (AR), 
Moving average (MA) and ARIMA models are given by 
the equations below from [26, 43]:

Autoregressive model

The past values affect the current time-series data as,

where µ is a constant, αi (1 ≤ i ≤ q) is a parameter of the 
model, xt−i is a value that observed at (t−i) and �t is the 
error at time t.

(1)xt = � + �1xt−1 + �2xt−2 +⋯ + �pxt−p + �t

Fig. 3   The diagram of the 
ARIMA model implementation



	 Journal of Radioanalytical and Nuclear Chemistry

1 3

Moving average model

The past error terms affect the current time-series data as 
follows,

where µ is a constant, βi (1 ≤ i ≤ q) is a parameter of the 
model, εt−i is an error value that observed at (t−i) and �t is 
the error at time t.

The non-stationary time-series can be converted to sta-
tionary by differencing the (X) time-series data as,

Finally, the ARIMA model can be expressed as,

where Δd is the difference operator.
In the case of ARIMA (p, d, q), p means the order of 

the autoregressive term (AR), d means the order of the 
differencing and q means the order of the moving average 
term (MA).

The fundamental steps for the ARIMA model imple-
mentation are shown in Fig. 3, [44], in which each infor-
mation is described in the result section.

Finally, the selected model is applied for its relevant time-
series data to predict future cases. The reliability of each 
model was examined by finding the errors like below [45]:

Here, n is the total number of predicted values, X(k) is 
actual data, PE(k) is the percentage error; and X(k) is the 
predicted data.

Radiological parameters calculation

Exposure levels and the hazard indices for the monitor-
ing points are calculated by using the following equations 
[46–49]. We converted the units to suit the literature:

Absorbed dose rate (D)

Outdoor gamma dose rates (OGDR) in the air are meas-
ured in μSv h−1 unit. The data obtained for the air dose rate 

(2)xt = � − �1�t−1 + �2�t−2 −⋯ − �q�t−q + �t

(3)ΔXt = Xt − Xt−1

(4)ΔdXt =
(

� + �1Δ
dxt−1 + �2Δ

dxt−2 +⋯ + �pΔ
dxt−p

)

+ �t − �1�t−1 + �2�t−2 − �q�t−q

(5)
RMSE =

∑

�

X(k) − X(k)

�2

n

(6)MAPE =
1

n

n
∑

k=1

PE(k)

in μSv h−1 are converted into μR h−1 using the conversion 
factor. The external absorbed doses in nGyh−1 include both 
the cosmic rays and terrestrial component of the gamma 
radiation. The data obtained for the external exposure rate 
in R h−1 are also converted into absorbed dose rates nGy 
h−1 using convenient conversion factor

The annual effective dose equivalent (AEDE)

The computed absorbed dose rates are used to calculate the 
annual effective dose equivalent (AEDE) received by resi-

dents in the study area. The AEDEs are calculated using 
the following formula:

In this equation, for the calculation of the AEDE, 
the dose conversion factor of 0.7 is recommended by 
UNSCEAR for the conversion coefficient from the 
absorbed dose in air to the effective dose received by adults 
and an occupancy factor of 0.2 for outdoor exposure.

Excess lifetime cancer risk (ELCR)

The excess lifetime cancer risk (ELCR) is estimated 
based on calculated values of AEDE through the follow-
ing equation:

where AEDE is the annual effective dose equivalent, DL 
is the duration of life (70 years) and RF (Sv−1) is the fatal 
cancer risk factor per Sievert, which is 0.05 Sv−1 according 
to the ICRP-60.

Results and discussion

ARIMA model establishment

Original data’s autocorrelation function (ACF) graphs 
of (MP1, MP2, MP4, and MP5) showed a very slow 
decay and this was considered as a sign of all data non-
stationarity property. Moreover, the Kwiatkowski–Phil-
lips–Schmidt–Shin (KPSS) test p-values displays that data 

(7)1 μRh−1 = 8.7 nGyh−1

(8)

AEDE
(

�Svy−1
)

= D
(

nGyh−1
)

× (0.7 Sv∕Gy)

× (0.2) × (8760 year) × 10
−3

(9)ELCR = AEDE × (DL) × (RF)
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Fig. 4   Left panels a–d sample autocorrelation (ACF) plots before differencing. Right panels e–h sample autocorrelation (ACF) plots after 1st degree differencing
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was not stationary, because (p-value = 0.01) for all moni-
toring points. Then, the data were transformed into station-
ary by using the 1st order differencing. The differenced 
time-series ACF for all the monitoring points are shown 
in Fig. 4. Besides, the stationarity of the differenced data 
was examined by the Augmented–Dickey–Fuller (ADF) 
and KPSS tests, which confirmed the stationarity of the 
differenced data, because the ADF test p-values for all 
data sets were lower than (0.05), while for the KPSS test 
p-values for all monitoring points were higher than (0.05), 
thus both tests satisfy the stationarity criteria.

Following that, the ARIMA model build up phase 
started in order to identify the order of p and q terms. The 
merely possible way that has been in use by scholars to 
guess their orders depend on the partial autocorrelations 
function (PACF) and ACF graphs of the differenced time 
series. The p and q values are equal to the number of the 
lag where spikes are coming into the confidence level in 
PACF and ACF graphs, respectively [50–54]. However, it 
has been criticized by some researchers that this estima-
tion method could not be sufficient at every time [55]. In 
spite of (ACF) and (PACF) suggestions, there are a num-
ber of information criteria that provide selection the best 
ARIMA model, namely Bayesian information criterion 
(BIC), and Akaike’s Information Criteria (AIC). The best 
fit ARIMA model was selected with the minimum AIC and 
BIC values, and they are defined as follows [45]:

where k is the number of estimated parameters, n is the 
number of recorded measurements, and l is the value of the 
likelihood.

This study attempted (144) various (AR), (I = 1), (MA) 
combinations for each monitoring point data to start from 
(0,1,0) to (11,1,11) models. As the initial step, the tentative 
models were selected relying on the lowest AIC and BIC 
values. If two models have a close AIC and BIC values, the 
model with the smallest values of RMSE and MAPE errors 
was chosen as the tentative model. After model identification 
and parameter estimations, the best model was selected as 
(MP1) data ARIMA (9,1,3) among all other (143) trained 
models, because this model passed all the criteria.

Another crucial phase in the ARIMA model building is 
the residual diagnostics which were obtained by using MAT-
LAB® software. Literally, an ARIMA model is adequate 
when its residuals are normally distributed and random [56]. 
The standardized residual and residual histogram between 
the predicted and true values of the air dose rate of MP1 
were calculated to test the model goodness. Figure 5a shows 
that most of the standardized residuals for air dose rate 

(10)AIC = 2k − 2 log (l)

(11)BIC = k log (n) − 2 log (l)

Fig. 5   The residual diagnostics of tentative ARIMA model for MP1
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forecasts have ±0.2 values; thus, the standardized residual 
can be considered as normally distributed, which reveals 
the goodness of the proposed ARIMA models. The autocor-
relation and partial autocorrelation residual plots of MP1 
show that for the first 20 lags, all sample autocorrelations 
fall inside the confidence levels, indicating that the residu-
als appear to be random. The residuals randomness was 
confirmed by applying the Ljung-Box Q-Test [57]. In this 
case, the Ljung-Box Q-Test shows that the first 20 lag auto-
correlations among the residuals are zero (p-value = 0.96), 
indicating that the residuals are random and that the model 
provides an adequate fit to the data [26, 58]. The above set of 
residual diagnostics are tested on all other monitoring points 
and the same kind of results are achieved. Here only residual 
diagnostics graphs of MP1 are shown in Fig. 5. Eventually, 
these models in Table 1 were selected as the most suitable 
ARIMA models.

ARIMA model air dose rate forecasting

In the previous part of the study the best fit models were 
established, then they were applied to the air dose rate time-
series to estimate the future 10 months period (1st Janu-
ary2019 to 1st October 2019). The results of the forecasting 
are illustrated graphically in Fig. 6, where each graph con-
sists of the training, test and predicted data. The magnified 
part of each graph at the top-right corner shows the actual, 
forecasted, upper confidence and lower confidence levels. 
The results indicate that the ARIMA model prediction dose 
rates follow the actual dose data by monitoring points with 
small variability and they fall within the confidence band.

The spatial distribution of the forecasted air dose rates 
was mapped by using the Kriging Interpolation Technique 
(KIT) [37]. KIT defined the semivariogram among the air 
dose rate monitoring points. KIT results also show that the 
air dose rates will remain higher around the MP4 as the 
radionuclides were mostly released in this direction due 
to the weather conditions after the accident. Afterward, 
the model’s accuracy was tested again by calculating the 
MAPE and RMSE among the actual and the predicted val-
ues. The small error values show the accuracy of the model. 

For instance, the MAPE takes values 2.2%, 2.7%, 3.1% and 
5.1%; and RMSE value are 0.029, 0.026, 0.049 and 0.067 for 
MP2, MP1, MP4 and MP5, respectively. We think that some 
discrepancies between actual and predicted data in MP2, 
MP4 and MP5 will be resolved by increasing the number 
of data (Fig. 6).

Eventually, the fitted models were applied for their rel-
evant measured air dose rates time-series from (1st Janu-
ary2013–1st December 2019) to predict the air dose rates for 
the period (1st January 2020–1st October 2020). The spatial 
distribution of the forecast air dose rates at 1 m height are 
illustrated by an animation simulation in mp.4 format.

Model forecasted air dose rate hazard indices

The results of the absorbed dose rate in the monitoring 
points around FDNPP are varied from 662.1 nGy h−1 (MP1 
points) to 1231 nGy h−1 (MP4 points) for four monitoring 
points (Table 2). The training data period covers the period 
from 1st January 2013 to 1st December 2018.

In the monitoring points calculated average of the annual 
effective dose equivalent was found as 2845.5 μSvy−1, 
which is also above the world average. It is 70 μSvy−1 for 
the world average. The values obtained in this study are well 
above the world average annual effective dose level for out-
door environments, which is an indication of radiological 
contamination.

The average of cancer risk for adults in the region of mon-
itoring points around the FDNPP was exposed to the outdoor 
gamma dose rate, which was measured as 9.96 × 10–3. This 
value was found to be higher than the average world standard 
of 0.29 × 10–3, suggesting that individuals exposed to this 
radiation may develop cancer during their lifetime due to the 
ionization of tissues [46], regarding this point, most recently 
studies also reported the thyroid cancer relation with the 
air doses in the Fukushima prefecture [59, 60]. In Tables 3 
and 4, the hazard indices are shown according to the test 
and ARIMA model data for (1st January 2019–1st October 
2019) for all monitoring points, respectively. The results for 
the hazard indices for all monitoring points of the test data 
and ARIMA models compared, as a result it can be noticed 
that all the results are in good agreement with each other.

Conclusions

We conclude the main findings of the study as follows:

1.	 ARIMA model forecasted data recommend that all the 
stationarity tests should be examined for the case of the 
time-series stationarity check, and support the idea that 
the BIC and AIC are the most valuable paths to deter-

Table 1   Tentative ARIMA models for all monitoring point data

Monitor-
ing points

Tentative 
ARIMA 
model

AIC BIC Ljung-
box Q-test 
(p-values)

MP1 (9,1,3) −137.50 −107.71 0.96
MP2 (9,1,3) −62.19 −32.41 0.89
MP4 (2,1,4) −43.47 −25.6 0.78
MP5 (8,1,4) 0.96 30.96 0.94
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Fig. 6   Measured and ARIMA 
predicted air dose rates for all 
monitoring points
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mine the tentative ARIMA models instead of solely uti-
lizing the ACF and PACF decay lag numbers,

2.	 The simulation video based on ARIMA forecasted air 
dose rates provides information on the spatial distribu-
tion of air dose rates. This information can be used in 
advanced monitoring processes, planning of vital pro-
cesses such as radioactive fallout planning, and develop-
ment of nuclear reactor accident scenarios,

3.	 Air dose measurements on 01/01/2013 were recorded as 
(3.2 µSv.hr-1, 5.67 µSv.hr-1, 6.25 µSv.hr-1 and 6.29 µSv.
hr-1), at MP1, MP2, MP4, and MP5 respectively. On 
01/12/2018, at the same respective points MP1, MP2, 
MP4, and MP5, air dose rates measured (0.79 µSv.hr-1, 
1.06 µSv.hr-1, 1.30 µSv.hr-1 and 0.95 µSv.hr-1). These 
changes demonstrate that the air dose rates had reduced 
significantly during the period studied, to approximately 
75%, 78%, 76%, and 82% of their initial respective val-
ues.

4.	 On the contrary, the forecasted air dose rates suggest that 
the radiation level can be remained higher at these areas 
in the northwest direction from the FDNPP compared 
with north and south regions.

5.	 The results obtained for the absorbed dose rate, outdoor 
annual effective dose equivalent, and excess lifetime 
cancer risk are found to be above the globally permis-
sible limits. As the average lifetime cancer risk for 
adults is considerably higher than the world average as 
9.96 × 10–3, this shows that in the future there is a need 
for wider risk analysis related to environmental radio-
activity in the study region.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10967-​021-​07726-8.
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