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Abstract: The most important factor for designs in which friction materials are used is the coefficient of friction. The

coefficient of friction has been determined taking such variants as velocity, temperature, and pressure into account, which

arise from various factors in friction materials, and by analyzing the effects of these variants on friction materials. Many

test instruments have been produced in order to determine the coefficient of friction. In this article, a study about the use

of machine learning algorithms instead of test instruments in order to determine the coefficient of friction is presented.

Isotonic regression was selected as the machine learning method in determining the coefficient of friction. The correlation

coefficient between the results of isotonic regression algorithms and the results taken from the test instruments was

measured as 0.9999 and the root mean squared error was 0.0014 in the experiments conducted. Selection of the number

of optimum samples was enabled by taking bias–variance tradeoff into account, and this increased the performance of

the classifier in use.

The target of this study was to prevent the practice of time-consuming test activities by using machine learning

methods instead of test instruments in determining the friction coefficient. This presents a solution for decreasing the

factors of time and cost.
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1. Introduction

Although friction absorbs a great deal of useful work energy, it is often unnoticed in our daily life. For instance,

friction is present in many moving surfaces, ranging from walking or moving a car to handling a pen or blinking

our eyes [1]. In a general sense, friction is defined as the resistance shown by the surfaces that are in contact

and the objects moving on each other or towards each other [2,3]. There are a wide number of theories that try

to explain friction. Among these, the one that is closest to reality is the that of Bowden and Tabor. According

to their theory, friction results from 2 basic factors. The first of these emerges in the real contact part in the

adhesion. In this part, source links come into existence and the power that makes it possible to dismantle these

links is Fs. The other is the influence of (S) power that the coign on the hard surface makes on the soft surface

at the time of friction [4].

The systems that enable transformation of the motion energy of vehicles into heat via friction to get the

motion under control are called braking systems. Lining at the braking process is used in order to slow or stop

the skidding of the mating face between the lining itself and the object that it tries to brake in a controlled way
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[5]. Today, instead of the asbestos-based linings, which are sensitive to high temperatures and threaten human

health, the goal is to produce linings that are manufactured through powder metallurgy, are resistant to high

temperatures, and do not threaten human health [6].

Coefficient friction and wearing rates according to the pressure, velocity, and temperature values have

been obtained by doing experiments of sample linings prepared numerously at braking conditions specified in

valid standards and at the test instrument designed with the aim of determining the coefficient friction of braking

linings [7]. That the object does not accelerate while determining the friction coefficient, or that it moves at

a stable speed, is a result of this (F = ma = 0) [8]. The friction coefficient (u) is divided into 2 according to

TS 555 as hot and cold coefficient numbers. The cold coefficient number is the arithmetical average of friction

coefficients measured at 100, 150, and 200 ◦C under 1050 kPa pressure. The hot friction coefficient is, however,

the arithmetic average of friction coefficients measured at 350 and 400 ◦C under 300, 350, 1050, and 3000 kPa

pressures [9].

The temperature occurring at the time of friction as a result of the unevenness and absorption of the

surfaces highly affects the friction coefficient, while the increase of the temperature causes the decrease of the

friction coefficient in the material and the system does not work [10]. For this reason, after the necessary

grinding over the surface in the experimental machine, rubbing processes are done; the surface is rubbed with

a rubber whose grain size is 320 and powders are cleaned with dry air or equivalent material that does not

leave behind fiber. For the friction materials to be able to offer a good friction surface, in the experimental

machines where the tests are made, generally campanes and disks made of perlitic cast iron are used. Their

Brinell hardness values are desired to be between 170 and 255 HB (kg/mm2). Friction must be between related

surfaces and certain values. As an example, because of the lack of friction in car brakes, the car cannot stop at

the desired distance and time or blockage of the car’s brakes occurs because of the over-friction [11].

Obtaining the data from the test instrument produced requires much time. Because of such negative

factors, the activities aimed to be done with the test instrument can be done instead by using machine learning

algorithms.

We can now save vast amounts of data thanks to the improvements in information technologies. Every

moment, millions of data reach centers where data are kept from supermarket checkout counters, ATMs, POS

machines, and e-trade applications. It is not possible to analyze and process such vast data by hand. In order

to find a solution for these problems, the machine learning method was developed and still continues to be

used. Machine learning methods try to find the most suitable model for the data using the data from the past.

They analyze the new data according to this method. Different applications have different expectations from

the analysis. It is possible to classify machine learning methods according to those expectations [12].

2. Materials and methods

2.1. Tools used in experiments

Tools used in the study presented in this paper include a test instrument [7] and WEKA Software Developer,

version 3.7.1 [13].

2.2. Feature selection

Feature selection is one of the most crucial steps of many pattern recognition and artificial intelligence prob-

lems [14]. One of the factors affecting the decision processes of the machine learning algorithm is whether

the qualities are suitable or not. When selecting a good attribute subset, there are 2 fundamentally different
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approaches. One is to make an independent assessment based on general characteristics of the data; the other is

to evaluate the subset using the machine learning algorithm that will ultimately be employed for learning [15].

In our research, we used both approaches in the selection of quality. Before the learning stage is started, using

the first approach, the qualities that could help compose good training data so that the learning-based system

can make influential decisions were assessed. With the second approach, the results of the machine learning

algorithms that were used were evaluated. Making use of the second approach, at the same time, the utility

theory approach in the selection of the qualities was applied. Utility theory is concerned with making rational

decisions when we are uncertain about the state [12]. We can express this as follows: let the quality that we

observed beforehand be x and let S position be composed of the following detailed situation: Sk , k = 1, . . . ,

n. According to this, the probability of an Sk that is known to belong to x quality is counted as P(Sk|x). Let
us define the decision motion that designates the x quality to the Sk position as αi , and our utility function as

U ik . Thus, the expected utility is:

EU (αi |x ) =
∑
k

UikP (Sk |x ). (1)

If we suppose that the motion that maximizes the expected utility is αi , the expected utility of αi for x quality

is shown as in Eq. (2):

EU (x) = max
i

∑
k

UikP (Sk |x ). (2)

Let our new quality added into the quality cluster be y. The expected utility is then demonstrated as in Eq.

(3):

EU (x, y) = max
i

∑
k

UikP (Sk |x , y). (3)

According to this, if EU(x, y) > EU(x), y quality can be said to be a remarkable quality. In other words, if

the expected utility of the new quality added into the quality cluster is more than the expected utility of the

former quality cluster, then the new quality can be said to be useful.

Maximizing the joint dependency with a minimum size of variables is generally the main task of feature

selection. For obtaining a minimal subset while trying to maximize the joint dependency with the target

variable, the redundancy among selected variables must be reduced to a minimum [16]. If any newly added

quality increases EU with the selection of the quality carried out according to EU, the maximum relation

between qualities (maximum relevance) is provided. If EU does not increase, there is no need to choose a

quality. Thus, the minimum surplus (minimum redundancy) principle is provided and unnecessary qualities are

left out.

2.3. Preparation of training data by using a testing instrument

The testing instrument is designed in such a way that reliable results can be obtained through certain standards.

Every detail is taken into consideration in order that experimental stages can be done practically, either on

designation or after the start of production. The coefficient friction of brake linings under different factors such

as speed, heat, and pressure is investigated. A total of 1050 training data points were acquired from the testing

instrument as a result of the experiments.

There is electrohydraulic system in the engine that can provide a brake pressure system and the friction

coefficient experimental pressures stated in TS 555. With the control of the computer program and electronic

1442
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recharge equipment in the system, a closed cycle was composed. While running the system for the first time,

the desired system pressure was detected by the electronic control card, and it gave way to electrohydraulic

on/off and proportional valves. Via the closed cycle constituted by the operation of the system, it was tried to

keep the feedback data and system pressure stable. In the determination of the friction coefficient, calculation

is done by considering the system pressure at that time. The friction speed is determined by the number of

revolutions per minute entered into the system [17]. The transfer of circular motion coming out of the electric

motor to the disk through the shaft is realized thanks to an invertor. These cycles are between 0 and 1400 1/d.

In order to enable the 1050 kPa and 3000 kPa balata surface pressure described in TS 9076 and spin

brake disk in the experimental mechanism, a 1400 d/d 3-phase electric motor of 5.5 kW power was chosen. The

circular motion of the electric motor was arranged to provide 6 m/s speed in the reference caliber where the

erosion experiment would be carried out using a belt and pulley and spinning the brake disk at 680 d/d in the

unloaded situation [18].

In all of the experiments, the experiment initiation temperature was taken as 50 ◦C and the experiments

were made under 10.5 MPa pressure. Temperature showed changes faster or slower according to the friction

coefficients of these brake linings. Again, the friction surface temperature of the linings rose to 300 ◦C and

oscillation began at this temperature change. When the temperature change enters this process, by becoming a

part of the activity, the manual control and electrical heater provide a heat increase and enable the possibility

of watching the changes seen at up to 400 ◦C of friction coefficient stated in TS 555. The friction coefficient of

linings under the influence of such factors as different cycles, temperatures, and pressures was examined.

2.4. Machine learning

Inductive machine learning algorithms can learn patterns from labeled data, i.e. cases that have a known

outcome [19]. In knowledge discovery, machine learning is most commonly used to mean the application of

induction algorithms, which is one step in the knowledge discovery process [20]. There are very different machine

learning approaches for pattern learning on data [21]. One of these approaches is regression. Regression is named

for the problems in which output is a numerical value inside training data.

2.4.1. Classification algorithm used in the experiment: isotonic regression

The isotonic regression classifier learns an isotonic regression model. It picks the attribute to the results in the

lowest squared error. Missing values are not allowed. It can only deal with numeric attributes. It considers

the monotonically increasing case as well as the monotonically decreasing case [22]. Isotonic regression is also

sometimes referred to as monotonic regression. Isotonic regression is used when the direction of the trend is

strictly increasing, while monotonic regression could imply a trend that is either strictly increasing or strictly

decreasing [23].

In simple regression we assume a linear relationship between a predictor p = (p1 , ..., p i , ..., pn) and a

response y = (y1 , ..., y i , ..., yn). Note that for the predictors we use p instead of the common notation x since

later on we embed this algorithm into a convex programming problem where the target variables are typically

denoted by x. However, the loss function to be minimized is a least squares problem of the form:

f (α, β) =
n∑

i=1

wi (yi − α − βpi)
2 → min, (4)
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where α and β are the regression parameters and w i represents some optional observation weights. Extensions

can be formulated in terms of polynomials or other nonlinear parametric regression specifications. In many

situations the researcher has no information regarding the mathematical specification of the true regression

function. Rather, it can assume a particular shape that can be characterized by certain order restrictions.

Typically, this involves that the y i values increase with the ordered p i values. Such a situation is called

isotonic regression [24].

Suppose that P is the finite set {p1 , p2 , ..., pn } of the ordered predictors with no ties, i.e. p1 <

p2 < · · · < pn . Let y be again the observed response vector and x = (x1 , ..., x i , ..., xn) the unknown response

values to be fitted. The least squares problem in monotonic regression can be stated as:

f (x) =
n∑

i=1

wi (yi − xi)
2 → min, (5)

which has to be minimized over x under the inequality restrictions x1 ≤ x2 ≤ ··· ≤ xn for isotonic regression [24].

Isotonic regression implements the method for learning an isotonic regression function based on the pair-

adjacent violators (PAV) approach. Estimating a piecewise constant monotonically increasing function is an

instance of isotonic regression, for which there is a fast algorithm based on the PAV approach. The basic

PAV algorithm iteratively merges pairs of neighboring data points that violate the monotonicity constraint by

computing their weighted mean – initially, this will be the mean of 0/1 values – and using it to replace the

original data points. This is repeated until all conflicts have been resolved. It can be shown that the order in

which data points are merged does not affect the outcome of the process. The result is a function that increases

monotonically in a stepwise fashion [25].

Isotonic regression is simpler than commonly used statistical methods and it is often used among statis-

ticians [26]. Isotonic regression is a single-sided test used to compare group averages when there are sequential

expectations of in-line or categorical data [27]. Isotonic regression is in fact the simplest ordering situation.

Simple line hypothesis ((µ1 ≤ µ2 ≤ µ3 ≤ µ4) can be put in order not leaving space for decrease. Isotonic

regression happens with the comparison and mixture of the data in different groups until the group averages

left are paired off at H2 [26] .

2.4.2. Other classification algorithms used in the experiment

The results obtained through using such classifiers as linear regression, least median squared linear regres-

sion (LeastMedSq), Gaussian processes, pace regression, simple linear regression, and SMO regression in exper-

iments were compared with isotonic regression. The reasons for using isotonic regression are explained in the

experimental results. In addition, the selections of all of the classifiers used in the experiments were determined

as assumed.

Linear regression: Uses the Akaike criterion [28] for model selection and is able to deal with weighted

instances [29].

LeastMedSq: Implements a least median squared linear regression utilizing the existing WEKA Linear-

Regression class to form predictions. Least squared regression functions are generated from random subsamples

of the data. The least squared regression with the lowest median squared error is chosen as the final model [30].

Classical least squares regression consists of minimizing the sum of the squared residuals. In LeastMedSq, a

different approach is introduced, in which the sum is replaced by the median of the squared residuals. The
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resulting estimator can resist the effect of nearly 50% of contamination in the data. In the special case of simple

regression, it corresponds to finding the narrowest strip covering half of the observations. Generalizations are

possible for multivariate location, orthogonal regression, and hypothesis testing in linear models [31].

Gaussian processes: Implements Gaussian processes for regression without hyperparameter tuning. To

make choosing an appropriate noise level easier, this implementation applies normalization/standardization to

the target attribute as well as the other attributes (if normalization/standardization is turned on). Missing

values are replaced by the global mean/mode. Nominal attributes are converted to binary ones. Note that

kernel caching is turned off if the kernel used implements Cache Kernel [32].

Pace regression: Under regularity conditions, pace regression is provably optimal when the number of

coefficients tends to infinity. It consists of a group of estimators that are either overall optimal or optimal under

certain conditions [33].

Simple linear regression: Learns a simple linear regression model. Picks the attribute that results in the

lowest squared error. Missing values are not allowed [34].

SMO regression: SMOreg [35] implements the support vector machine for regression [36]. The parameters

can be learned using various algorithms. The algorithm is selected by setting the RegOptimizer [37].

2.4.3. K-fold cross-validation

K-fold cross-validation is a method for estimating the accuracy (or error) of an inducer by dividing the data

into k mutually exclusive subsets (the “folds”) of approximately equal size. The inducer is trained and tested

k times. Each time it is trained on the data set minus a fold and tested on that fold. The accuracy estimate is

the average accuracy for the k folds [20]. Limitations can be placed on the amount of the data used for training

data by using cross-validation [15]. Thus, sorting the unnecessary amount of data out of the training data can

be achieved. This prevents the learning algorithm from memorizing instead of learning. We choose the k figure

as 10 in our experiments.

2.5. Evaluation criteria

Different criteria are used to learn the performance of algorithms. Root mean squared error (RMSE) and

correlation coefficient values are used for the evaluation of the classifiers used in the experiment. These evaluation

criteria are explained below.

2.5.1. Root mean squared error

c is the unknown value of a parameter of a distribution, and X is an estimator of this parameter. In this context,

it is usual to denote the estimator by θ* (instead of X) and the value of the parameter by θ0 (instead of c).

ε is called the “estimation error” of θ*. A good estimator is close to θ0 on average. Just how close is usually

measured by the mean of the squared estimation error ε . This quantity is called the mean square error (MSE)

of the estimator θ* [38]. The RMSE is the square root of the MSE.

MSE = E
[
(θ∗ − θ0)

2
]

(6)

MSE = V ar (θ∗) + Bias (θ∗)
2

(7)

As can be observed from Eq. (7), a high degree of bias and variance increase the value of the MSE. From this

point of view, the RMSE presented by WEKA is very important in the process of the preparation of data.

1445
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2.5.2. Correlation coefficient

The correlation coefficient (CC) is a coefficient that indicates relation between independent variables of force

and direction. It changes between –1 and +1. The positive values of CC specify a direct directional relation,

and the negative values specify a reverse directional relation. If the CC is 0, it indicates there is no relationship

between variables. Detailed explanation of CC values is shown in Table 1 as given by Cohen [39].

Table 1. Cohens correlation table.

Correlation Negative Positive
Low –0.29 to –0.10 0.10 to 0.29

Middle –0.49 to –0.30 0.30 to 0.49
High –0.50 to –1.00 0.50 to 1.00

3. Classification results and discussion

Let us examine the test results of 7 classifiers used on 1050 training data points. Our criteria at the stage of

testing were determined as accuracy rate, RMSE, and model forming. The parameters that the classifiers used

in the experiments are taken as the assumed parameters. According to this, when the results in Table 2 are

examined, the classifier whose correlation coefficient is the highest (CC = 0.9999), with the lowest error rate

(RMSE = 0.0014), is seen to be isotonic regression. Moreover, isotonic regression comes in second place in

terms of composing the model within 0.02 s. As the k value at the time of the CV process was chosen as 10, 10

models were formed. Because 0.02 s passes for a single model, the duration for 10 models to be formed will be

only 0.2 s because of all of these positive performance values; isotonic regression was thus chosen to compose a

model.

Table 2. The comparison of performance criteria of the classifiers.

Classifiers CC RMSE Time taken to build model (s)
Linear regression 0.9997 0.0029 0.1

LeastMedSq 0.9997 0.0029 6.3
Gaussian processes 0.9907 0.0166 14.48
Pace regression 0.9997 0.0029 0.08

Simple linear regression 0.9997 0.0029 0.01
SMO regression 0.9997 0.0029 1.99

Isotonic regression 0.9999 0.0014 0.02

Training data prepared separately for each quality were tried to be learnt using isotonic regression. The

statistical results gained after the learning process are shown in Table 3. According to Table 3, learning results

on the training data prepared only with power data give better results compared with training data prepared

according to other qualities. For this, it can be said that power quality is more dominant compared with pressure

and heat qualities.

The number of training data used in the process of learning a classifier is very important. An insufficient

amount of training data might cause the classifier to make inexact predictions. The reason for this is that the

complexity of the function obtained by using training data is less than the complexity of the real function. In

this case, the function created with training data is more complex than the real function. Thus, the prediction

of a new test datum might be different from what it is meant to be. That is, a generalization mistake is

made. Experiments are done for bias–variance tradeoff by using 1050 examples that are acquired by the testing
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instrument in order to prevent this situation. In these experiments, our first criterion for bias–variance tradeoff

is the RMSE value. We do the experiments by increasing the number of our training data from 10 to 1050

in order to observe the change in this value. At the end of the experiments, examples used for training are

compared with the RMSE value. This comparison is shown in Figure 1. Furthermore, the reason why the

number of our training data starts from 10 is that the k value was taken as 10 during cross-validation.

y = - 1E-16x5 + 4E-13x4 - 5E-10x3 + 3E-07x2 - 8E-05x + 0,0139  

R² = 0,9692  

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

0.0160

0.0180

0.0200

10 90 170 250 330 410 490 570 650 730 810 890 970 1050

Figure 1. Red line: correlation between RMSE and sample number. Black line: tendency line of the correlation between

RMSE and sample number.

Table 3. Statistical information gained as a result of the training data prepared separately according to each quality

using isotonic regression.

Attributes CC RMSE Error sample count
Force 0.9999 0.0014 26

Pressure 0.7753 0.0763 1046
Heat 0.9118 0.0496 1043

Analyzing Figure 1, when sample amounts are between 770 and 1050, the RMSE value varies between

0.0012 and 0.0018 and consists of 281 data. The average of these RMSE values is 0.0014. The reason why we

used a central tendency scale as average is that all values are close to each other and the difference between

min–max values is very small. Our first sample giving amounts equal to or smaller than 0.0014 after the

training data including 770 samples is the training data that have 771 samples. This example set’s RMSE value

is equivalent to 0.0014. That is why we delimited the amounts of sample being used in our training data at

771. We can say that our classifier’s performance for the set including 771 samples is very good because, for

that set of training data, the CC value is measured as 0.9999. That shows us that there is a perfect harmony

between the real value and estimated value. We also indicated the correlation between the RMSE and sample

amounts with a tendency line in Figure 1. This indicated that the function of this tendency line is a quadratic

polynomial. The reliability of this polynomial’s function is indicated with R2 = 0.969. R2 (the coefficient of

determination) is the proportion of variability in a data set that is accounted for by the statistical model [40].

In other words, R2 gives an idea about how good the function’s predictions are. The R2 value is expressed

as the square of the CC and it can be said that the predictions are more successful however closer it is to 1.

In this case, we can say that the fourth-degree polynomial function reveals well the relationship between the

RMSE and the sample number.

In Figure 2, the correlation between the sample number and the CC has been indicated. According to

this graphic, while the component number of the training data is 10, the CC value has been estimated as 0.9270,
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and after the sample number has become 769, the CC value permanently stays at 0.9999. That is, as the sample

number approaches 1050, it is a CC = 1.0 asymptote.

0.9000

0.9100

0.9200

0.9300

0.9400

0.9500

0.9600

0.9700

0.9800

0.9900

1.0000

10 90 170 250 330 410 490 570 650 730 810 890 970 1050

Figure 2. The correlation graphic between CC and sample number.

The difference between real values and estimated values was seen only in 16 samples in these experiments.

For the rest of the samples, there is total relevance between real values and estimated values. This shows us

that the classifier had a great hit on predictions. The 16 samples that show incongruity are shown in Table 4.

When this is analyzed, it can be observed that the error value between real and estimated values is 0.01. This

shows us that even among the 16 samples that show incongruity, the error rate is very low.

Table 4. The difference between actual and predicted values.

Instance no. Actual value Predicted value Error
1 0.46 0.45 –0.01
2 0.32 0.31 –0.01
3 0.56 0.57 0.01
4 0.51 0.52 0.01
5 0.44 0.45 0.01
6 0.16 0.17 0.01
7 0.31 0.32 0.01
8 0.45 0.46 0.01
9 0.54 0.53 –0.01
10 0.15 0.16 0.01
11 0.42 0.41 –0.01
12 0.39 0.40 0.01
13 0.45 0.44 –0.01
14 0.09 0.1 0.01
15 0.36 0.37 0.01
16 0.20 0.21 0.01

In Figure 3, the range of the friction coefficient and the samples that have differences between real values

and estimated values are shown.

1448
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0.57

0.09
0.1

0.34

0.35 0.57

Figure 3. Range of friction coefficients between actual and predicted values. X axis: actual friction coefficient values,

Y-axis: predicted friction coefficient values, large crosses: error between values.

Results of the isotonic regression classifier chosen as the learning algorithm are shown in Table 5. In

consequence of using isotonic regression, the correlation coefficient between the real and estimated values was

estimated as 0.9999. This shows us that the correlation is in a positive direction and at a high degree. At the

same time, the facts that the mean absolute error and RMSE values are quite close to 0 and the relative absolute

error and root relative squared error rates are quite low also show us that the classifier has excellent predictions

with very few mistakes. An increase in the error number is seen in the results of increase of the sample number.

This shows that the sample number of 771 is appropriate for the performance of the classifier. When the sample

number is 1050, it is observed that the error number increases. In other words, the differences between the

predictions that the classifier has made have appeared. This shows us that the variance has increased.

Table 5. The comparison of the classifiers results as a consequence of the fact that the sample number is different.

Sample Error Mean (MAE) Root mean Relative Root relative Correlation
count count absolute squared error absolute error squared error coefficient

error (MAE) (RMSE) (RAE) (RRSE) (CC)
771 16 0.0002 0.0014 0.2217% 1.1952% 0.9999
1050 26 0.0002 0.0014 0.2217% 1.1952% 0.9999

Twenty-six errors in the predictions made for 1050 training data points are shown in Table 6. It can been

seen that the errors that the classifier made ranged from –0.01 to 0.01.

Statistical information about the entrance features and the exit feature used in learning process are shown

in Table 7.

The range of heat features is shown in Figure 4. When the range is analyzed, it is seen that heat feature

has a range between 49 and 348.

The range of force features is shown in Figure 5. When the range is analyzed, it is seen that force feature

has a range between 3.41 and 20.43.
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Table 6. The actual and predicted values of the friction coefficient for 1050 training data points.

Instance no. Actual value Predicted value Error
1 0.540 0.530 –0.01
2 0.560 0.570 0.01
3 0.420 0.410 –0.01
4 0.150 0.148 –0.003
5 0.200 0.210 0.01
6 0.390 0.400 0.01
7 0.190 0.200 0.01
8 0.190 0.200 0.01
9 0.090 0.100 0.01
10 0.110 0.120 0.01
11 0.450 0.460 0.01
12 0.150 0.147 –0.003
13 0.150 0.147 –0.003
14 0.310 0.320 0.01
15 0.510 0.520 0.01
16 0.130 0.120 –0.01
17 0.140 0.148 0.008
18 0.150 0.148 –0.003
19 0.440 0.450 0.01
20 0.130 0.140 0.01
21 0.140 0.150 0.01
22 0.460 0.450 –0.01
23 0.170 0.180 0.01
24 0.360 0.370 0.01
25 0.450 0.440 –0.01
26 0.320 0.310 –0.01

Table 7. Statistical information about features.

Features
Distinct Unique Minimum Maximum

Mean Std. dev.
value count value count value value

Heat 207 58 49 348 236.817 77.035
Force 500 323 3.41 20.43 11.031 4.034

Pressure 82 19 2.15 11.04 10.539 0.904
Friction (outcome) 47 3 0.09 0.57 0.307 0.112

26 

57 
44 

79 

13 

38 

94 

157 

228 

35 

49 198.5 348 

9 
24 

172 

206

76 

34 38 

62 65 60 

25 

3.41 11.92 20.43 

Figure 4. The range of heat features. Figure 5. The range of force features.
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The range of pressure features is shown in Figure 6. When the range is analyzed, it is seen that pressure

feature has a range between 2.15 and 11.04. The central tendency of the range is 10.539. That is, the frequency

of the values is between 10 and 11. In Figure 6, this situation is observed.

The range of friction coefficient features is shown in Figure 7. When the range is analyzed, it is seen that

the friction coefficient feature has a range between 0.09 and 0.57.

4 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 

502 

254 

2.15 6.6 11.04 

9 11 

191 194

80 

36 34 

62 
73 

56 

25 

0.09 0.33 0.57 

Figure 6. The range of pressure features. Figure 7. The range of friction coefficient features.

The range between the values of heat, force, and pressure with friction coefficient features is respectively

shown in Figure 8, 9, and 10. When Figure 8 is analyzed, it is seen that there is a nonlinear relation between

friction coefficient and heat.

0.57

49
0.09

0.33

198.5 348

0.57

3.41
0.09

0.33

11.92 20.43

Figure 8. Relation between actual friction coefficient

values and heat values. X-axis: heat, Y-axis: friction

coefficient.

Figure 9. Relation between actual friction coefficient and

force values. X-axis: force, Y-axis: friction coefficient.

0.57

2.15
0.09

0.33

6.59 11.04

Figure 10. Relation between actual friction coefficient values and pressure values. X-axis: pressure, Y-axis: friction

coefficient.
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In Figure 9, the relation between force and friction coefficient values is shown. When the relation between

the values is analyzed, it is seen that there is a relation close to a linear line between these 2 features.

The graph of the relation between pressure and friction coefficient values is shown in Figure 10. When it

is analyzed, it is realized that there is a nonlinear relation between these 2 features.

Relations between other features can also be seen easily after these graphs are analyzed. According

to this, it can also be said that there is a nonlinear relation between force–heat and force–pressure features.

Furthermore, it can be said that there is a nonlinear relation between heat and pressure. It can be said that

there is a relation close to a linear line between only the friction coefficient and force. According to this, it is

seen that in problems in which there is a nonlinear relation between features, machine learning algorithms are

very good at solving the relations between these features.

4. Conclusion

It was determined by our machine learning work that the desired results can be achieved easily without depending

on a test instrument. The friction coefficient was predicted according to speed, pressure, and heat values by

using isotonic regression. The correlation coefficient between the predicted friction coefficient and the friction

coefficient acquired from the test instrument was 0.9999. This shows that there is a perfect relation between the

predicted value and the real value. Meanwhile, the error rate among values is very close to 0 (RMSE = 0.0014),

which is a sign that the difference between these 2 values is very low. The optimum sample number necessary

for learning was selected from the 1050 data points acquired from the test machine by using RMSE criteria.

Thus, bias–variance tradeoff was achieved. The number of samples in the training data prepared according to

this was 771. The most important reason for error rates being close to 0 was that the friction coefficient of

755 training data out of 771 was the same as the real friction coefficient. As a conclusion, the cost was totally

removed and the time factor was also decreased considerably with the method used.
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